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INTRODUCTION: The development of multi-modal FMRI pulse sequences means several types of complementary hemodynamic information (e.g. 
blood flow, volume and BOLD changes) can be acquired simultaneously.  Most analysis is currently performed using separate linear methods that 
attempt to obtain pure information on each type of signal.  In actuality, the images acquired are not pure and there is cross-contamination between the 
different hemodynamic changes. Furthermore, these effects are inherently nonlinear and interrelated, making accurate quantification difficult. 

Recent research has demonstrated that a nonlinear perfusion model in a Bayesian framework can analyze dual-echo ASL data more efficiently than 
traditional General Linear Model (GLM) approaches [1].  However, the Markov-Chain Monte Carlo (MCMC) method used for this inference was 
very computationally intensive, limiting the data set size and model complexity.  This work takes the same nonlinear model but performs inference 
using a fast approximate method called Variational Bayes (VB) [2]. VB makes the assumption that the posterior distribution is “factored” into subsets 
of parameters.  In addition, we also need to linearize the nonlinear perfusion model about the estimated mean parameters.  This reduces the 
marginalization integrals to a set of linear equations which are solved iteratively, similarly to expectation maximization. 

METHODS: Data from a dual-echo ASL sequence [1] was analyzed using a 
nonlinear perfusion model, using both MCMC and VB inference methods.  
In the model, each voxel’s magnetization consists of static magnetization M 
(defined as anything that remains in the voxel between the time of tag and 
acquisition) and blood inflow Q (ASL), both of which vary in time with the 
stimulus.  This is weighted by the T2* decay rate R, which is also time-
varying (the BOLD effect). Two echo times are acquired for each inversion, 
and tag and control images are alternated. 

As in [1], a first-order autoregressive noise model helps to de-emphasize the 
low-frequency noise.  This introduces an autoregression parameter α and 
noise variance �-1 for each echo time, which are tuned probabilistically based 
on the data.  Non-informative priors are used on parameters of interest M, Q, 
and R, and on the noise estimates α and �-1.  A Gaussian prior of 0.5±0.25 s 
was applied on the ASL delay �t.   

The results shown are from a single representative subject.  For comparison, 
the same data was analyzed using a state-of-the-art GLM approach [3], and 
the Bayesian estimates were transformed back into percent-change and Z-
statistic estimates of BOLD and CBF.  

RESULTS AND DISCUSSION: The spatial plots (figure 1) reveal 
that the two Bayesian methods provide cleaner and more confident 
BOLD measurements, while CBF is largely unaffected.  A point-by-
point comparison (figure 2) shows that VB and MCMC are in close 
agreement about values, but VB loses some statistical power in 
BOLD.  However, compared to the GLM it still extracts additional 
information and shows improved statistical power. 

Using MCMC or VB with the nonlinear perfusion model allows the 
static magnetization changes to also be inferred (figure 3).  Note that 
it is not possible to model these static magnetization changes with 
the GLM approach, and that this deficiency causes the GLM to 
underestimate BOLD changes by approximately 15% (figure 2).  The 
static magnetization changes are thought to be due to a combination 
of blood flow and volume changes [1]. 

In this application VB offers at least an order of magnitude speed 
increase over MCMC while maintaining most of the advantages, and 

may make it computationally feasible to explore 
more detailed models of functional MRI. 
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Figure 1:  Z-statistics (Z>3) for the BOLD and CBF effects.  VB 
and MCMC show higher BOLD confidence and less spurious 
activation than GLM. 

 

Figure 2: (Top) The VB and MCMC methods give very similar results, with 
VB having lower BOLD confidence.  (Bottom) VB makes lower CBF and 
higher BOLD estimates than the GLM, with higher BOLD confidence. 

Figure 3: VB and MCMC strongly agree in their estimates of changes in static 
magnetization, but VB underestimates the confidence of this estimate relative to MCMC. 
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