Phase encoding without gradients using TRASE-FSE MRI

S. B. King ${ }^{1}$, P. Latta ${ }^{1}$, V. Volotovskyy ${ }^{1}$, J. C. Sharp ${ }^{1}$, and B. Tomanek ${ }^{1}$
${ }^{1}$ Institute for Biodiagnostics, National Research Council of Canada, Winnipeg, Manitoba, Canada

Introduction

The development of fast MRI methods has focused on efficient single-shot or parallel acquisition of undersampled k-space trajectories. Recently, a new RF B1-field method of spatial encoding was introduced whereby k-space is traversed in the phase encoding direction without using magnetic field gradients, but by applying different B1-fields produced by a Tx-array, TRansmit Array Spatial Encoding (TRASE) [1]. Here we demonstrate a new TRASE-FSE method that accomplishes complete phase encoding with only two different transmit B1-fields, by MRI simulation as well as first experimental evidence using a switched 2-channel transmit array system.

Theory

If an array of Tx-elements are driven to produce a B1-phase variation along a particular direction, associated with a particular spatial harmonic of the form, $T_{t}(\mathrm{r})=T_{0} e^{i\left(2 \pi \mathrm{t} \Delta \mathbf{k}_{t} \cdot \mathbf{r}\right)}$, then the NMR signal becomes spatially encoded by the transmit B1-field. If two elements of a Tx-array produce a B1phase variation of $+\phi$ and - ϕ respectively over some distance in the phase encoding direction, a phase-difference of $\Delta \phi=2 \phi$ exists. Consider a single shot TRASE-FSE sequence with an echo train $\left(N_{\text {echoes }}\right): 90^{1}-180^{1}-180^{2}-180^{1}-180^{2} \ldots$ with no phase encode gradients applied. The 90° RF pulse applied with array-1, excites magnetization with encoded phase variation of $+\phi$ along the phase encode direction. The 180° pulse reflects the magnetization phase to $-\phi$ and adds an additional phase of $+2 \phi$ (-2ϕ for array- 2). Hence, data is acquired with successive phase jumps 4ϕ or $2 \Delta \phi$. Applying the Nyquist condition, the spatial distance over which the two Tx-arrays produces a phase difference $\Delta \phi=\pi$, is the FOV over which an object can exist, to produce a single shot TRASE-FSE unaliased image. Defining this spatial distance (where $\Delta \phi=\pi$) as FOV then resolution $\Delta \mathrm{r}_{\text {TRASE }}=\mathrm{FOV}_{\text {shot }} / N_{\text {echoes }}$, and per shot $\Delta \mathrm{k}_{\text {shot }}=2 \pi / \mathrm{FOV}_{\text {shot }}$. To increase the FOV by N-fold, $N_{\text {shots }}$-shots are required, with a corresponding k-space shift, $+\Delta \mathrm{k}_{\text {shot }} / N_{\text {shots }}$, in general accomplished with a pre-phase gradient. But a 2 -shot, $2 \mathrm{x}-\mathrm{FOV}$, TRASE-FSE image can be obtained if for the second shot, the order of the RF pulse train is reversed to: $90^{2}-180^{2}-180^{1}-180^{2}-180^{1} \ldots$

Methods/Results

A Bloch equation MRI simulation ($\mathrm{T} 1=1 \mathrm{sec}, \mathrm{T} 2=75 \mathrm{msec}$) of the TRASE-FSE method using a +2 pi and a -2 pi coil pair with uniform magnitude and linear phase distributions, which requires 4 -shots for complete k-space sampling (Fig.la), is compared to a standard 4 -shot FSE image (Fig. 1 b). For experiments, two 10 cm diameter, 25 cm long, 300 MHz spiral birdcage coils were constructed, one with a $15 \mathrm{~cm}+\pi$ and the other a $15 \mathrm{~cm}-\pi$ phase distribution along the z-axis (Fig.lc). The phase difference ($\Delta \phi$) distribution was mapped (Fig.ld) by calculating the phase of the ratio of two separate gradient echo images, each obtained using a different Tx-coil. A low flip angle GE image from each coil was used to estimate each coils B1-magnitude distribution (Fig.1e). The simulation was repeated using these phase and magnitude distributions (Fig. $2 d$). With a 4.5 cm diameter ping-pong ball saline phantom, a 32 echo train FSE image was acquired using only one transmitting coil: $90^{1}-180^{1}-180^{1}-180^{1}-180^{1} \ldots$ first with normal phase encoding (Fig. 2a), second without phase encoding (Fig.2b) and finally repeated where the $90^{1}-180^{1}-180^{2}-180^{1}-180^{2} \ldots$ TRASE-FSE scheme was implemented by switching between the two spiral birdcage coils during transmission (Fig. $2 c$).
 phase-difference map in units of π shows a $\Delta \phi=2 \pi$ over 15 cm and $\mathrm{FOV}_{\text {shot }}=7.5 \mathrm{~cm}$. (e) B 1 magnitude maps of two coils within ping-pong sample.

Fig. 2: Standard 1 -shot, 32 echo, $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ FOV FSE image using $+\pi$ coil; (a) with phase encoding on, and (b) with phase encoding turned off. (c) Again with phase encoding turned off, but using the TRASE-FSE method $90^{1}-180^{1}-180^{2}-180^{1}-180^{2} \ldots$ by switching between the two spiral birdcage coils during transmission. Notice that this phase-direction 1-shot FOV $\sim 7.5 \mathrm{~cm}$. (d) Simulation of the same TRASE-FSE using the same B1 magnitude profiles shown in Fig.le

Discussion/Conclusions

Using only two different B1-fields, with uniform magnitude and linear phase distributions, TRASE-FSE produces nice images (Fig. la) very comparable to images obtained using standard gradient encoding (Fig. 1b). The FOV relationship described is also shown in these results, as 4-shots are required for an object occupying the entire volume of a $\pm 2 \pi$ coil pair $(\Delta \phi=4 \pi)$, where $\mathrm{FOV}_{\text {shot }}=1 / 4$ coil length. Although the first experimental image is not very good, this can be expected from using such an inhomogenous B1-field distribution (Fig.2d), where it was found that B1-magnitude homogeneity and proper Tx-power scaling are the key to obtaining nice images. At these high field strengths, it is obvious that B1-shimming will be required, and the TRASE technique is better suited for lower frequency applications. The TRASE method offers many possibilities for novel 1D, 2 D , or 3 D k-space encoding trajectories, but the same method can also be used for any k-space excitation trajectory [2,3]. Future research will include multi-Transmitter experimental implementation and extension of the TRASE method to 2D spatial encoding as well as slice selection.
References: [1] S.B. King, et. al. Proc. ISMRM, p.2628, 2006. [2] J. Pauly, et al. JMR81:43-56(1989), [3] C.J. Hardy et al., JMR82:647-654(1989) . Acknowledgement: We thank Dr. Marco Gruwel and Tim Taves for their technical and EM simulation assistance.

