FA and directional diffusivities of normal white matter maturation from late childhood to young adulthood

P-L. Khong^{1,2}, D. Qiu¹, W-T. Siok^{2,3}, and L-H. Tan^{2,3}

¹Diagnostic Radiology, The University of Hong Kong, Hong Kong, China, People's Republic of, ²State Key Laboratory in Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China, People's Republic of, ³Linguistics, The University of Hong Kong

Aim: We evaluate fractional anisotropy (FA), radial (λ_{\perp}) and parallel $(\lambda_{\prime\prime})$ diffusivities of the brain white matter at late childhood, early adolescence and young adulthood, representing a period of maturation of cognitive processes, language and reading abilities.

Materials and methods: We randomly recruited normal healthy volunteers of three age-groups (Group 1, 2, 3) for cross-sectional DTI studies. Raven's Standard Progressive Matrices was used as an index of nonverbal intelligence for Group 1 and 2. Subject demographics are summarized in Table 1. Using SPM2, T2 weighted image was first coregistered to non-diffusion weighted(b0) image from DTI and then normalized to T2 template. The resultant normalization parameter was applied to FA image to bring it into standard space. A total of 7 regions-of-interest were drawn manually or with semi-automated method from the normalized maps to quantify FA, λ_{\parallel} and $\lambda_{\prime\prime}$ for each age-group. These were the frontal (FWM) and parietal (PWM) white matter, the anterior limb of the internal capsule (ALIC) and posterior limb of the internal capsule (PLIC), the genu (CC genu), body (CC body) and splenium (CC splenium) of the corpus callosum. Analysis of Variance (ANOVA) was used to test for statistical significance in DTI indices among the 3 groups.

Subject demographics		Group 1	Group 2	Group 3
No. of subjects		24	27	24
Age /years	Range	6.8 - 7.9	9.4 - 11.5	18.6 - 26.1
	Mean (SD)	7.4 (0.3)	10.3 (0.5)	22.8 (2.3)
Gender	Male	13	16	11
	Female	11	11	13
IQ score(Raven) Mean (SD)		35.5 (7.0)	44.1 (3.4)	N/A

Imager	3T Siemens		
B factor and DWI	$1000 \text{ mm}^{-2}\text{s}, 6 \text{ directions} + 1 \text{ b0}$		
Repetition	4		
TR/TE	6000/84ms		
FOV	$192 \times 192 \mathrm{cm}$		
Acquisition matrix	64×64		
Slice thickness	3mm without gap		

Table 1 showing subject demographics of Groups 1, 2, 3

Table 2 showing protocol of diffusion tensor imaging

Results: There was significant increase in FA in the projection fibres (FWM, PWM, ALIC, PLIC) and trend of increase in FA in the splenium of the CC from late childhood through adolescence to young adulthood. There was corresponding decrease in both λ_{ll} and λ_{1} with greater decrease in λ_{1} leading to increase in FA (Table 3). 0.65

	I	1						
Region	Grp 1 (n=24)	Grp 2 (n=27)	Grp 3 (n=24)	р				
EA Moon(SD)								
FA Mean(SD)								
CC genu	0.598 (0.065)	0.597 (0.059)	0.573 (0.092)	0.390				
CC body	0.609 (0.062)	0.571 (0.078)	0.579 (0.075)	0.163				
CC splenium	0.717 (0.111)	0.761 (0.077)	0.762 (0.064)	0.122				
ALIC	0.459 (0.052)	0.490 (0.043)	0.518 (0.054)	< 0.001				
PLIC	0.594 (0.031)	0.605 (0.024)	0.633 (0.035)	< 0.001				
FWM	0.388 (0.012)	0.394 (0.014)	0.405 (0.015)	< 0.001				
PWM	0.359 (0.016)	0.370 (0.014)	0.382 (0.017)	< 0.001				
$\lambda_{\prime\prime}$ Mean (SD) $ imes 10^{-3}$ mm ² /s								
CC genu	2.01 (0.13)	1.97 (0.21)	1.91 (0.14)	0.100				
CC body	1.88 (0.17)	1.82 (0.12)	1.84 (0.14)	0.399				
CC splenium	1.98 (0.15)	1.97 (0.10)	1.92 (013)	0.143				
ALIC	1.32 (0.07)	1.34 (0.06)	1.29 (0.09)	0.075				
PLIC	1.44 (0.04)	1.41 (0.04)	1.38 (0.05)	< 0.001				
FWM	1.23 (0.02)	1.19 (0.02)	1.12 (0.02)	< 0.001				
PWM	1.19 (0.02)	1.16 (0.02)	1.14 (0.03)	< 0.001				
λ_{\perp} Mean (SD) $\times 10^{-3}$ mm ² /s								
CC genu	0.728 (0.139)	0.707 (0.151)	0.730 (0.179)	0.837				
CC body	0.668 (0.161)	0.708 (0.175)	0.710 (0.172)	0.627				
CC splenium	0.508 (0.169)	0.436 (0.135)	0.413 (0.107)	0.054				
ALIC	0.591 (0.038)	0.561 (0.034)	0.509 (0.036)	< 0.001				
PLIC	0.483 (0.030)	0.465 (0.025)	0.429 (0.032)	< 0.001				
FWM	0.666 (0.022)	0.635 (0.020)	0.596 (0.018)	< 0.001				
PWM	0.677 (0.026)	0.648 (0.019)	0.634 (0.023)	< 0.001				

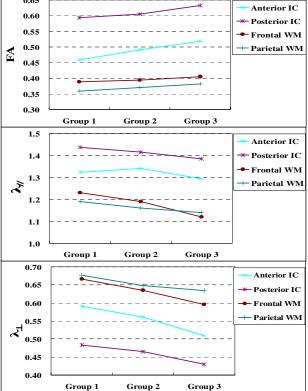


Table 3 showing FA, $\lambda_{\prime\prime}$ and λ_{\perp} of 7 ROIs among 3 age groups

Fig. 1 showing trend plots of FA, λ_{ll} and λ_{\perp} among 3 age groups

Conclusion: Only few studies have described FA and directional diffusivity changes in late childhood through adolescence and early adulthood [1,2]. Our findings are in keeping with continued maturation of projection fibres into early adulthood with increase in FA and decrease in both $\lambda_{1/2}$ and $\lambda_{1/2}$. Although the exact biophysical mechanisms underlying the changes of FA and directional diffusivities remain to be elucidated, these findings may arise from a combination of increased myelination, axonal packing, axonal growth and protein content (neurofilaments and microtubules) [3].

References:

1. Snook L, et al, 2005. NeuroImage. 26(4): 1164-74.

2. Schneider J, et al, 2004. Neuroradiology. 46(4): 258-66.

3. Beaulieu C, 2002. NMR Biomed. 15: 435-55.