Efficient ¹H to ³¹P polarization transfer on a clinical MR system with a single RF transmit channel

D. Klomp¹, A. Kentgens², and A. Heerschap¹

¹Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands, ²Physical Chemistry, Radboud University Nijmegen, Nijmegen, Netherlands

Introduction

Treatment selection for tumours relies on accurate discrimination between different tumour types. In many diagnostic examinations, MR spectroscopy (MRS) is added to increase the specificity of tumour-type determination or to follow tumour treatment. Choline containing metabolites are one of the most important markers in MRS of tumours. Although ¹H MRS can be used to detect the total choline pool in tissue, ³¹P MRS can be used to even discriminate between phosphocholine (PC) and glycerol phosphocholine (GPC). In addition, ³¹P MRS can detect phophoryl elthanolamine (PE) and glycerol phosphocholine (GPE). It has been shown that PC, PE, GPC and GPE can indeed be used as early markers for response and predictions to treatment [1,2]. Although specificity can increase with ³¹P MRS compared to ¹H MRS, the sensitivity is lower. Several techniques have been proposed to improve the ³¹P sensitivity using ¹H to ³¹P polarization transfer [3]. However, due to J couplings between ³¹P and ¹H that have similar magnitudes for homonuclear J couplings in PC, PE, GPE and GPC, the sensitivity enhancement is less than 50% of the potential enhancement of γ_{1H}/γ_{31P} (i.e. 2.4 fold). A method to cancel homonuclear J coupling effects in polarization transfer experiments is to apply frequency selective refocusing pulses during spin evolution. In this study we demonstrate the possibility to implement chemical shift selective refocusing pulses that fit into optimized echo times of an INEPT sequence achieving full ¹H to ³¹P polarization transfer in PC, PE, GPE and GPC. This procedure can be implemented on a clinical 3T broadband MR system with a single transmit RF system.

Methods

When no homonuclear J coupling effects are present, a refocused INEPT method can be used for ¹H to ³¹P polarization transfer with a ¹H echo time of 80ms (i.e. 1/2J) followed by a ³¹P echo time of 40ms (i.e. 1/4J, optimized for PC and PE). Within 80 ms, a non selective ¹H refocusing pulse in combination with 2 selective refocusing pulses on the ¹H

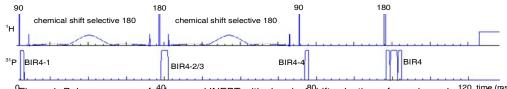
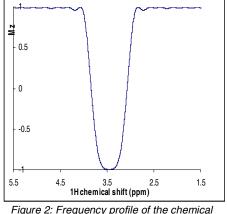
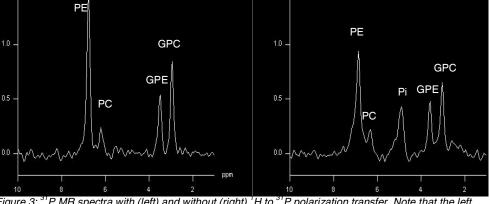




Figure 1: Pulse sequence of relocussed INEPT with chemical Shift selective refocussing pulses are applied sequentially with a frequency switch delay of 100us).

nuclei that have similar J couplings is used. In addition, an ISIS localization scheme is added. Adiabatic (BIR4) ³¹P pulses are employed and a small echo shift is included to allow polarization transfer on a single RF channel [4] (Figure 1). The ¹H chemical shifts of the nuclei that have homonuclear J couplings similar to the heteronuclear J couplings are 3.64 versus 4.28ppm (PC), 3.66 versus 4.31ppm (GPC) and 3.22 versus 3.98ppm (PE) of which the higher field resonances are coupled to the ³¹P nucleus [5]. This requires selective refocusing pulses with a slope of maximum 3.98-3.66 = 0.32ppm such that the pulse affects the higher field resonances without affecting the lower field resonances. A Shinar le Roux algorithm is used to design such an RF pulse with sufficient chemical shift selectivity at 3T using 32ms as a time constraint and assuming homogenous ¹H excitation. A sensitivity optimized coil setup is used for ³¹P detection in human brain at 3T consisting of two slightly overlapping surface coils in quadrature operation shifted into a quadrature ¹H birdcage coil [6]. The coil is interfaced to a broadband clinical 3T MR system (TRIO TIM, Siemens, Erlangen) without a second RF channel. The ISIS localised refocused INEPT method with chemical shift selective refocusing pulses is applied on a 23 years old healthy volunteer. The results are compared with an ISIS localised direct ³¹P pulse-acquire method using adiabatic excitation. In both methods, the volume of excitation was (5cm)³, TR was 10s (to minimize T1 effects) , number of acquisitions was 32 and ¹H decoupling was applied during ³¹P detection (400ms WALTZ16). **Results and discussion**

The simulated frequency profile of the chemical shift selective refocusing pulse is shown in figure 2. As can be seen the selectivity of the pulse is sufficient for use at 3T. A comparison between direct ³¹P acquisition and acquisition by polarization transfer using a single transmit channel shows improved sensitivity (up to 40%) and spectral resolution (figure 3). The latter can be due to the selectivity of the refocusing pulses or T2 relaxation.

shift selective refocusing pulses

Figure 3: ³¹P MR spectra with (left) and without (right) ¹H to ³¹P polarization transfer. Note that the left spectrum is acquired at an echo time of 140ms, and is not optimized with respect to T1 and T2.

Conclusion

These preliminary results indicate that chemical shift selective pulses can be used to enable ¹H to ³¹P polarization transfer effectively for PC, PE, GPE and GPC. Additionally we have shown that ¹H to ³¹P polarization transfer is feasible on a broadband clinical MR system with only a single RF transmit channel. Knowledge of T1 and T2 times of PC and GPC for ¹H and ³¹P could further improve the sensitivity of the proposed method by adjusting the timings from the sequence accordingly.

References[1] Negendank. NMR Biomed 1992;5:303; [2] Arias-Mendosa et al. NMR Biomed. 2006;19(4):504; [3] Mancini et al. Magn Reson Med 2005;54:1065; [4] Klomp et al. ISMRM2006;589; [5] Gavindaraju et al. NMR Biomed 2000;13:129; [6] Klomp et al. Magn Reson Med 2006;55:271.