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INTRODUCTION 
Trabecular bone (TB), an intricate network of bony rods and plates, is found in long 
bones, the vertebrae and other skeletal sites. Most fractures occur at sites rich in 
trabecular bone, with about 60% of bone's strength attributed to its mineral density. 
Recent research indicates that the remaining 40%  variation in bone strength can be 
explained by its micro-structure. Trabecular plates are oriented parallel to the local 
loading direction with rods supporting the plates against buckling in the 
perpendicular direction. A key parameter describing TB micro-architecture is the 
ratio of plate-like to rod-like structures, reflecting the mechanical strength of the 
architecture. Recent advances [1] in high-resolution MRI have allowed in-vivo 
imaging of the trabecular network with sufficient resolution and image quality for 
quantitative analysis and structural classification [2]. Analysis of MR images of TB 
is challenging because of the fairly low signal to noise ratio (SNR) of the images 
(~10) and partial volume effects resulting from the very small scale of the imaged 
structures (~100µm). Here we introduce a new, gray-scale based method that 
classifies TB structures into rods and plates and determines their orientation using an 
analogy to rigid body mechanics. 
THEORY 
Let us denote the image intensity at voxel r with m(r). In the case of an MR image of 
TB this intensity is proportional to the bone marrow density weighted by the coil 
sensitivity profile. If we invert the intensity values by subtracting them from their 
maximum value the resulting image, b(r), will reflect the local bone density. We 
define the local tensor of inertia, I(r), at voxel r of the density b(r) as 

 I(r)=∑b(r+r')[r'2-|r'><r'|],                (1)  
where the vector r' takes values within a ball of radius s centered at r and the second 
term in the sum is the diad formed by that vector. I(r) will reflect the mechanical 
properties of the bone density, and its eigenvalues, λ1< λ2< λ3, can be used to classify 
structures into rods and plates. We define c=2(λ2-λ1)/(λ3-λ1)-1, a classification 
parameter that takes values from -1 to 1. For oblate, plate-like structures the two 
smallest eigenvalues, λ1 and λ2, will be closer together than the two largest 
eigenvalues,  λ2 and λ3, leading to a negative value of c. The eigenvector 
corresponding to the largest eigenvalue, λ3, will be perpendicular to the oblate plane 
of the structure determining the orientation of the plate. Rod-like structures have the 
two largest eigenvalues closer together, c>0, with the eigenvector corresponding to λ1 determining the orientation of the rod, as illustrated in Fig. 1. Structures for which 
c=0 are neither plates nor rods and are found in regions joining plate-like and rod-like structures (Fig. 2). The sign of c thus determines whether a structure is plate or 
rod-like, while its absolute value measures how plate-like or rod-like the structure is.  
Local inertial anisotropy (LIA), as described above, produces a continuous classification of voxels as belonging to rod-like or plate-like structures and can be applied to 
both gray-scale and segmented images. Scaling the image intensity scales the eigenvalues of  I(r) (see Eq. 1) and does not change the classification (i.e. ratios of 
eigenvalues), or the corresponding orientation of the structures. Since I(r) is calculated over a ball neighborhood, a constant offset in the image intensity produces an 
isotropic (scalar) correction to I(r) which also does not affect the classification. LIA is also robust to noise corruption since spatially homogeneous noise produces an 
approximately isotropic tensor of inertia within the ball neighborhood. The variations in I(r) introduced by noise are not biased since the I(r) is linear in the image 
intensity.  Thus, the mean values of the noise corrupted classification should not depend on the amount of noise present in the image. 
METHODS 
The algorithm was implemented in C++ and integrated into a graphical user interface (GUI) based on the Qt framework (Trolltech ASA). The GUI allowed for single 
image and batch processing as well as interactive visualization of both classification and orientation (Fig. 2). Two variants of the algorithm were implemented. LIA 
applied to gray-scale inputs, followed the description above. For binary (segmented into object and background) 
datasets the analysis was applied only to points belonging to the object region. The I(r) was calculated not in the 
ball neighborhood of each object point but for a connected region of linear dimensions s resulting from a region-
growing procedure with the initial point as the seed. This modified algorithm removed edge effects in segmented 
data and produced classifications in excellent agreement with the heuristically expected results as shown in Fig. 2. 
The plate to rod ratio η=(∑c( r)<0 b(r)|c( r)|)/(∑c( r)>0 b(r)|c( r)|) was used to quantify the calculated classification. 
RESULTS 
The method was validated on 8 binarized micro-CT images of the human radius acquired at (16µm)3 voxel size. 
Each image was down-sampled to progressively lower resolutions - (32µm)3, (64µm)3, (128µm)3 - using 
appropriately reduced regions of k-space from the Fourier transform of the original image. As Fig. 3a) illustrates 
differences in η  are preserved between most specimens down to the lowest resolution. The sensitivity of the 
method to SNR variations was explored by corrupting the lowest resolution, (128µm)3 voxel size, images with 
varying levels of noise. Fig. 3b) shows that, while there is a change in η as SNR decreases, this change is 
systematic and preserves the differences in η between specimens. The largest change in η from its value at SNR=4 
to its value at SNR=25 is ~40% and for most specimens the change from SNR=8 to SNR=25 is less than 20%. LIA 
analysis was also applied to two in-vivo MR datasets acquired in an ongoing clinical study of testosterone deficient 
men. The images were processed using the Virtual Bone Biopsy [1] and their skeletons classified using the second 
variant of LIA, intended for binary data. Fig. 4 illustrates the difference in architecture between the two images, 
with one (left) having a plate-to-rod ratio of 2.9 and the other (right) a plate-to-rod ratio of 2.3. Further evaluation 
of LIA is currently under way on in-vivo MR data. 
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Fig 1. A disk (left) has two small and on large 
moment of inertia perpendicular to the disk 
plane. A cylinder (right) has two large and one 
small moment of inertia parallel to its axis.  
Color scale (bottom) assigning red to plates  
and blue to rods. 

Fig. 4. Top row: Volumes of interest of MR 
images acquired and processed with the Virtual 
Bone Biopsy. Bottom row: LIA classified 
skeletons of the above images. 

 
Fig 2. Volume rendering of  a 
micro-CT scan from the human 
radius with voxels color coded 
according to classification.  

 
Fig. 3. a) Plate-to-rod ratio as a function of the log2 of the voxel size divided by 
the micro-CT resolution (16µm). The plate-to-rod ratio was normalized to its 
mean value (over all specimens) at a given resolution to emphasize changes. b) 
Plate-to-rod ratio as a function of SNR for the lowest resolution images.  
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