
segment kappa

cerebral cortex 0.85
midbrain - hindbrain 0.86
cerebellum 0.89
olfactory areas 0.58
thalamus 0.82
hippocampal formation 0.85
caudoputamen 0.80
corpus callosum 0.71
hypothalamus 0.76
fornix system 0.56
corticospinal tract 0.48
ventricles 0.42
globus pallidus 0.50
anterior commisure, olfactory limb 0.25
substantia nigra 0.55
anterior commisure, temporal limb 0.15
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Introduction The automated segmentation of MRM images of the ex vivo mouse brain is a challenging task, mostly due to artefacts, noise or deformations. Besides 
annotation purposes, segmentation of the mouse brain is essential for quantitative phenotyping of (transgenic) mouse models, which is done by volumetric 
measurements or 3D shape analysis of brain regions. In our previous work1, manual segmentations of the brain were used for registration to single histology sections. 
The aim of this work is to develop a fast automated segmentation method that can be used for the registration. Ali et al. presented a segmentation method where mouse 
brain scans of different imaging protocols were combined with statistical prior information2. We chose for an atlas-based segmentation combined with extended Markov 
random field (MRF) clustering to avoid multiple, time consuming scanning protocols. For human brain segmentation, MRF clustering was previously extended with 
mutual information3, probabilistic atlases4 or deformable models5. Although these methods work correctly on human brains, the algorithms encounter problems on 
mouse brains due to the poor signal-to-noise ratio. We found that mouse brains can be segmented accurately when the MRF clustering is extended with edge 
information. 
 

Methods For the experiment we used 7 mouse brains, which were perfusion-fixed with paraformaldehyde, after which the skull was removed.  The MRM images were 
acquired with a Bruker 9.4 Tesla scanner with a T1W 3D-GE protocol, resulting in a 256x256x256 volume with an isotropic resolution of 78.125 µm per voxel. The 
proposed algorithm is split up in two parts: First, an affine atlas-based registration is performed to obtain an initial segmentation, which is then refined by an extended 
MRF clustering method. The atlas-based registration is used to find a rough initial segmentation for the clustering algorithm and to extract prior information on the 
intensity distributions for each class. The affine registration uses mutual information combined with an optimizer that is set to a fast convergence. The clustering is used 
for the refinement of the segmentation near the borders of the various structures, where the atlas-based segmentation alone is not accurate enough. To incorporate the 
edge information, combined with the prior knowledge from the atlas, we propose to use the following function as extended MRF clustering:  
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The formula returns the probability that voxel x belongs to class c, given its direct neighbours N, and is composed of three factors which influence the segmentation: the 
posterior probability, the intensity distribution for all classes and the neighbourhood influence. The weights w1, w2 and w3 are used to tune the algorithm and must sum 
up to 1, since the three components are probabilities on their own. The components are formulated as:  
 

∑
∈

=

Cc

posterior cpcxp

cpcxp
xcP

)()|(

)()|(
)|( , 

∑
∈

−
−−=

Cc
c

c
ensities xx

xx
xcP

2

2

int )(

)(
1)|(  and ∑

∈ +
+

+
=∈

Nn

c
neighbors N

nS

N

xS
NnxcP

1

)(

1

)(
),|( . 

 

In the formulas above, p(x|c) denotes the ratio of the number of voxels belonging to c, p(c) the random change at class c and cx the mean intensity of class c. The nc in 

the last formula symbolises that for each class c, the neighbours can only contribute if they are also classified to c. These neighbours are weighted by the underlying 
edge information obtained by a Sobel edge detection filter S(x). This weighting causes that neighbours lying on or near an edge have less influence than the neighbours 
that lie inside a structure.  
 
Results and discussion Since an accurate average ex vivo brain atlas was 
absent, one of the brain images was assigned as atlas before the algorithm 
was evaluated. However, one volume is not representative for the whole 
dataset. Therefore, an average atlas was approximated by selecting one 
mouse brain as atlas and subsequently evaluating the algorithm on the other 
six mouse brains. This process was repeated seven times, so all mouse 
brains were used once as atlas. The final results were averaged over all 
experiments.  
We compared the volumes of the automated segmentation to the results of 
the manual segmentation, which was guided by the LONI atlas6, according 

to the kappa index: 
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The kappa indexes ordered by their volume and a segmented slice are 
displayed on the right. The good κ results are displayed in bold. The poor 
result for the olfactory areas is likely caused by experimental errors, since it 
is difficult to extract the brain from the skull without damaging or 
deforming the olfactory bulbs. These deformed areas cannot be correctly 
registered and cause the segmentation to fail. Furthermore, one can see in 
the segmented image that the automatic segmentation outperforms the 
manual segmentation on the borders of various structures, e.g at the 
cerebellum and the thalamus.  
 
Conclusion We demonstrated a fully automated and accurate segmentation method. The presented method will be further improved by the use of an average atlas, 
which is created from a set of ex vivo mouse brains. These brains will be imaged when they are still inside the skull, thereby preventing damage and deformation to 
brain structures like the olfactory areas. A less deformed and damaged atlas will likely generate a more accurate initial segmentation that results in a better clustering. 
Finally, the ex vivo segmentation will be incorporated into our previous work1 on the automated registration of the ex vivo mouse brain MRM images with a single 
histology section and, eventually, with the in vivo mouse brain.  
 
References [1] A.E.H.Scheenstra et al., in proc. Intl.Soc. Mag. Reson. Med, pp 2012 (2006) [2] A.A. Ali et al., NeuroImage 27:425�435(2005). [3] S.P. Awate et al., 
Medical Image Analysis, 10:726�739 (2006) [4] S. Bricq et al., in International Symposium on Biomedical Imaging, pp.386�389 (2006) [5] H.R. Underhill et al., in 
proc. Intl.Soc. Mag. Reson. Med, pp 829 (2006) [6] A. MacKenzie-Graham et al., Journal of Anatomy 205:71-149 (2004)  

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007) 624


