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Introduction 
Early identification and discrimination of ischemic tissue status is essential for rational decision-making in acute brain stroke therapy [1]. In stroke the 
pattern of recovery in brain tissue and/or its likelihood for progression to infarction are considered to be the most important biomarkers for evaluating 
treatment efficacy [2]. Unsupervised clustering approaches e.g., ISODATA (Iterative Self-Organizing Data Analysis Technique) can predict the eventual 
infarct size using acute information [3,4]. However, these methods identify major data clusters and assign individual pixels to one of these clusters. This 
approach, while useful, does not provide a pixel-by-pixel judgment as to the probability of eventual infarction; finding a point estimator for infarction 
remains an open problem [4, 5]. In this study, we hypothesized that, given a gold-standard map of T2 in the chronic stage of stroke (3 months post-
stroke), an Artificial Neural Network (ANN) might be trained to directly predict the size and pattern of the tissue fate similar to the T2WI from the 
information available in acute MR images. An image set at the acute stage consisting of T1 pre-contrast, T1 post-contrast, T2, Diffusion-Weighted and 
proton density was selected as the input to the ANN.  The co-registered three-month T2 map was considered to be the gold standard for the tissue fate. 
The training dataset consisted of 6 MRI sets from untreated stroke patients acquired at an average of 16:52 ±4 hours after onset. The ANN was trained, 
optimized and validated by the leave-one-out method. The results demonstrate that an ANN is a good candidate (r=0.9670, p<0.0001) for predicting the 
3-month lesion pattern and size from the information in the acute MRI.  
Materials and Method 
Six patients presenting with acute neurological deficit consistent with stroke, with MRI studies within 24h of onset, were selected. Stroke onset was 
defined as the last time the patient was known to be without neurological deficit. The severity of the neurological deficit was assessed using the National 
Institutes of Health Stroke Scale (NIHSS) score at the time of each MRI study. MRI studies were performed at the acute time point (<24 h after stroke 
onset), and outcome time point (90 days after stroke). Patients were excluded if they had cerebral hemorrhage at the acute time point or a history of 
prior stroke. MRI studies were acquired on a 1.5-tesla GE Signa MR scanner with echo-planar capability (GE, Milwaukee, Wisc., USA). Each MRI study 
consisted of axial multi-spin echo T2-weighted imaging (T2WI), pre- and post-contrast (Gd-DTPA) T1-weighted imaging (T1WI) and diffusion-weighted 
imaging (DWI) with slice thickness of 6 mm. The field of view (FOV) was 240 × 240 mm. For T1 and T2 imaging, the matrix was 256 × 192 and for DWI 
128 × 128. Additional parameters for each study were: (a) T1WI: TR/TE = 600/14 ms; (b) T2WI: TR/TE = 2,800/30, 60, 90, 120 ms; (c) axial DWI was 
performed using an echo-planar sequence, TR/TE = 10,000/101 ms, b-values = 1,000, 600, 300, 0 s/mm2, 1 NEX. For each patient, five images (T1 pre, 
T1 post, T2 �TE90, DWI and PD) at the acute time point were selected to provide the essential input features to the ANN. All acute and chronic images 
were registered to T2-TE90 as reference using Eigentool software [6]. To reduce mis-registration effects, all images were smoothed using a with a 5X5 
low pass. To create features independent of the MR system gain, all images were normalized to their brain mean value. A feature set was generated 
and sampled from five acute images and put into a feed-forward multiplayer perceptron (MLP) with back-propagation training algorithm. The ANN was 
trained, optimized and validated by leave-one-out method. The AUROC value (Area Under Receiver Operator Characteristic curve) of the ANN was 
used to calculate the ANN 
performance and optimize the 
ANN structure.  
Result 
The optimal ANN ([5+1 
bias]:[10 +1bias],[1]) was found 
by maximization of AUROC 
(Az=0.8152) for 1 hidden layer. 
As Figure 1 demonstrates, the 
ANN�s predictions (2nd row 
images) are visually similar to 
their corresponding chronic T2 
images (1st row). More 
objectively, as the graph 
demonstrates, the predicted 
pattern and lesion size by the ANN are well correlated to their three-month lesion 
(r=0.9670, p<0.0001). Note that the continuity of the ANN output provides more 
information regarding the tissue viability compared to the clustering techniques 
such as ISODATA. Figure 2 presents the scatter plot of the ANN response versus 
T2�weighted image at three months for 6 patients.  
Discussion 
A trained ANN capable of predicting the outcome, both in pattern and size, of a stroke from MR acute information can play an important role in tissue 
viability modeling. Since it is predictive of the outcome, such modeling may play an important role in the assessment of subacute therapeutic 
interventions, currently of great interest in the treatment of stroke. It may be possible to form a more clinically relevant prediction of outcome by including 
the NIHSS score as an input to the ANN, in addition to the stated feature set. 
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