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Introduction Undersampling of dynamic data may be used to make acquisition more efficient by forcing spatially distinct voxels to share their 
temporal bandwidth; this can be a benefit if only a small number of voxels require the full sampling bandwidth. Data are acquired in the k-t domain (k is 
spatial frequency and can be multidimensional, t is time) but are usually analysed in the conjugate x-f domain (x is space, f is temporal frequency). The 
intermediate spaces k-f and x-t, produced by Fourier transform in only one dimension from k-t are also of interest. Reconstruction from regularly 
undersampled multi-coil data (with k-t SENSE, x-f choice and others) can be accurately achieved in x-f space provided the number of signals that 
significantly contribute to an aliased voxel is small enough to be separated by a parallel imaging reconstruction (1). If this condition is violated it is 
necessary to use filtering or other methods that can at best approximate the correct solution. This implies that degree of signal overlap in x-f space is a 
key indicator that an undersampled dataset can be reconstructed accurately. However, to use this as a metric requires detailed analysis of the dynamic 
properties of the data, so a more generic indicator would be preferred. A conceptually appealing candidate is image entropy (H) (2), and here we 
consider its use as an indicator of signal overlap caused by aliasing.  
 
Method and results To explore the relationship between H and signal 
overlap, fully sampled k-space data for a time series of 2D images was undersampled 
with various different undersample patterns, all for the same undersample factor Q in 
dimensions (ky-kz-t) � equivalent to undersampling a 3D Cartesian scan. Patterns were 
constructed by undersampling ky by factor Q before cyclically shifting this in kz and t. 
The shift for each point in (kz,t) may be calculated as {kz × dz  +  dt × (t%Q)}%Q where 
% signifies the modulo operation, and dz and dt are parameters with ranges [1,Q] and 
[1,Q-1] respectively. Each (dz,dt) pair distributes aliases differently in x-f space. Results 
displayed in figure 1 were calculated from fully sampled short axis cardiac data with 
Q=5, giving 20 possible patterns. H was calculated for each pattern, as was a crude 
measure of the quantity of overlap of �dynamic� signal. This was made by using a threshold on the fully sampled data in x-f space to give a binary map of 
�dynamic information� so that for each alias pattern, the percentage of dynamic information aliasing onto other dynamic information could be estimated. 
The results from these methods (fig 1) were found to be inversely correlated with a coefficient of -0.86. There were no strong correlations between 
overlap area and H in the x-t, k-t or k-f domains. An explanation is that there are many static voxels in the image, meaning that large amounts of �area� in 
x-f space contain no information. Aliasing dynamic information onto this area does not create signal overlap, and so appears to increase the information 
content. Conversely by aliasing dynamic onto dynamic, the total amount of apparent information does not increase. Following from this result we take H 

to be a surrogate measure of the amount of signal overlap in 
aliased data with a higher H signifying less overlap 

Further consider variation of H as a function of Q 
for each space, x-t, x-f, k-t, k-f. Note that the absolute value 
of H for a given data set is different in the different spaces 
and both their absolute and relative sizes depend on image 
content. For this reason we have normalised H to 1 for fully 
sampled data in figure 2. It is instructive to consider a model 
situation where there is a single small dynamically changing 
object in an otherwise empty field of view (FOV). Since 
there is nothing in the background and the dynamic object 
was very small (occupying only 0.5% of the FOV by area), 
aliasing simply replicates information onto empty space and 
hence H(x-t) and 
H(x-f) both increase 

with Q (fig 2a). As expected H(k-t) falls as Q rises since increasing numbers of samples are set to zero, however 
we might have expected H(k-f) to increase; the fact that it does not demonstrates information loss from aliasing. 
This explains why x-f is the better domain in which to analyze and reconstruct. Adding a static background image 
to this model changes matters; H(x-t) does not increase as quickly as H(x-f) any more because aliasing of static 
regions onto other static regions causes beating and flickering in the x-t domain, while in the x-f domain 
information separation is preserved. A model with only static features helps to explain this (fig 2c); interestingly for 
this model, H(k-f) grows with Q because there is no signal overlap as all k values contain only static information. 

This analysis shows that in general H(x-f) increases as a function of Q when there is only a small 
dynamic feature, and that the addition of background information complicates matters but does not stop this 
trend. Figure 3 demonstrates H as a function of size of dynamic content: a circle of rapidly changing dynamic 
information was placed in the centre of a blank background, the plot shows H for Q=4 as the radius of the circle is 
increased. As the object size increases, the empty regions of x-t and x-f decline so the apparent amounts of 
information H(x-f) and H(x-t) initially increase, but then begin to saturate as the radius passes ¼ of the FOV since 
then increases in radius lead to overlap as well as occupation of empty space and the total information rises more 
slowly. In contrast H(k-t) and H(k-f) both show a decreasing trend with no initial increase. 

 
Conclusions  Image entropy in the x-f domain (H(x-f)) can be a good relative indicator of the severity of alias overlap. The strength of the technique 
lies in making comparisons rather than absolute judgements. For example given a pilot scan or motion model, it is possible to use H(x-f) to determine the 
best undersample pattern to use. At higher undersample factors H(x-f) begins to saturate, indicating that capacity to carry new information has been 
exhausted � this could provide a signature to indicate the maximum acceleration factor that is recoverable for a given dynamic object. X-f is the only one 
of the four spaces for which H systematically initially increases with aliasing regardless of image content, provided the dynamic components only occupy 
part of the FOV. This supports the intuitive view that x-f is the appropriate domain for reconstructing regularly undersampled data. 
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Fig 3 Circle containing dynamic
information on blank background. H
vs radius for Q=4. 
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Fig 1 a) Entropy in x-f space for each undersample pattern.
b) Area overlap in x-f space. The two correlate with R=-0.86.  
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Fig 2 H vs α for models a) with dynamic information and no background b) with 
both and c) with only static background information. H is normalised to H for Q=1. 
Single dynamic region occupied approx 0.5% of the FOV. 
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