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Introduction The k-t SENSE (1) and recently proposed x-f choice (2) techniques can be used to reconstruct dynamic MR data undersampled in 
the k-t domain. The requirement for reconstruction to be accurate is redundancy in the data in the form of static or slowly changing regions, and that the 
aliased pixels contain fewer contributions from dynamic signals than can be separated with parallel imaging. This can be achieved when only a small 
fraction of the voxels requires high temporal bandwidth. Both methods operate in x-f space and require an estimate of the solution to discriminate aliases 
from signal. It is a challenge to obtain the required solution estimate and spatial and/or temporal correlations can be exploited to achieve this. Using low 
spatial resolution training data as with k-t SENSE translates into averaging temporal spectra over nearby spatial locations implying spatially localised 
temporal correlations (and requires extra data to be acquired). The properties of x-f space suggest that knowledge of the precise location of different 
types of temporal information would be better; we will analyse how to obtain this information directly from aliased data in the presence of often low SNR. 
 
Method Starting with a fully sampled x-f space, we define �temporal correlation� to describe voxels with similar magnitude spectra at non zero 
frequencies. DC is always excluded since variation solely due to static features is irrelevant. We can define a space P such that the magnitude f-
spectrum (excluding DC) of a given voxel gives its position vector in P. Closeness in this space therefore implies temporal correlation. Local averaging in 

P can be used to combine temporally correlated signals 
from any part of the image, allowing us to produce a high 
SNR �model� of the true data. A useful property of x-f data 
is that in general, frequency spectra are strongly peaked at 
low |f|. As a result we can look for temporal correlations by 
comparing only low frequencies over some range ∆f 
(marked on fig 1a) � call this space P�. The signal profiles 
generally assume certain shapes and hence in P� the 
distribution of voxels is highly correlated. It is possible to 
identify these correlations with PCA and then further 
reduce the basis to say two dimensions � a helpful tool for 
visualisation but also for computational efficiency - call this 
space F (fig 1b). Since f-spectra are highly peaked, we may 
form space F from aliased data. In this case some voxels 
may be displaced in F due to aliasing; however multiple coil 
information can be used to remove such errors.  

Space F provides a way of constructing a signal 
distribution model directly from aliased data. Absolute 

values in F provide information on �how dynamic� a voxel is: information which can be used to decide which voxels alias only with static ones and 
therefore contain correct information over the full f-FOV, and which contain information damaged by aliasing. It is possible to then locally average full 
bandwidth spectra depending on the voxels� locations in F, over only voxels deemed to not contain aliasing artefacts. This generates, for each local 
neighbourhood in F, an estimate of the full bandwidth temporal frequency spectrum. These averaged spectra can be associated with voxels local in F 
that were damaged by aliasing: in this way we can generate an estimate of the signal distribution in un-aliased x-f space (fig 1c) directly from regularly 
undersampled data. In reality since complex spectra are averaged, the phase needs to be taken into account to avoid signal loss - this information is 
missing from F. For each space mentioned previously we can add 
linear phase variation across the spectrum as an extra dimension. 
Taking account of phase allows strong noise suppression with 
limited signal cancellation. The method has been used to provide 
models for reconstruction of data from both CE angiography (3 
datasets) and cardiac imaging (3 datasets) with both x-f choice and 
k-t SENSE. The model has favourable properties for both of these 
techniques; it has the same resolution as the data and importantly 
has a high relative SNR, greatly boosted by strong suppression of 
noise in static voxels. 
 
Results Results from angiography were similar to those previously 
published (2). Undersampled volumetric cardiac data were obtained 
using a Philips 1.5T scanner with a commercial implementation of 
k-t SENSE and a 5-channel receiver. A 20 phase, 15 slice data set was acquired in a single breath hold (healthy volunteer, 30 sec) using 5 fold 
undersampling and interleaved training data. When reconstructed with k-t SENSE using low resolution training data (fig 2a) a prominent residual 
flickering alias artefact of the edge of the heart (arrow, fig 2a) was present in both our implementation and that of the scanner. This artefact is not 
apparent in k-t SENSE reconstruction using the x-f model as training data (fig 2b), we suppose because edge information not present in the low 
resolution training data is present in the model. The x-f choice reconstruction (fig 2c) contains noticeably crisper edges at the myocardium-blood pool 
boundary during periods of rapid motion; however has a lower SNR in these regions. This is to be expected because the latter method allocates the 
necessary temporal bandwidth in these regions without trading it for noise suppression. 
 
Conclusions Presented is a general method for identifying and exploiting temporal correlations between spatially independent voxels in order to 
create a model of the x-f signal distribution from regularly undersampled dynamic data, primarily for use in reconstruction of such data. Low resolution 
training data is a pragmatic solution that assumes spatial correlation - i.e. adjacent voxels behave similarly - leading to loss of information about rapidly 
changing small features. In general, correlations are exploited to obtain the reference data but are not directly involved in the final reconstruction. We 
have shown that it is possible to construct a model without use of extra data and that as well as being well suited for x-f choice, k-t SENSE reconstruction 
quality can improved with this technique. 
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Fig 2  Same slice and phase from a) k-t SENSE reconstruction with low 
resolution training data, b) k-t SENSE using model c) x-f choice using model. 
Arrow on a marks position of alias artefact 
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Fig 1 a) Five fold undersampled x-f space (cardiac data) b) F space: each spot marks
one voxel (only a random subset plotted). Inset spectra show spectral shapes of voxels in
indicated region. c) x-f space model generated by current method d) equivalent low
resolution training data acquired with standard k-t SENSE protocol. 
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