
Figure 1 � The Kalman model 

Figure 2 � Four consecutive frames from  a cardiac experiment -  Left column: 
Sliding window reconstruction. Right column: Kalman reconstruction 
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Introduction: Real-time acquisitions are vital for most cardiac applications. These acquisitions, however, suffer from low SNR and low temporal resolution. 
Specifically, 20+ frames per second(fps) are often desirable in cardiac imaging, whereas MRI scanners can at most provide raw rates around 10 full fps. 
Previous works such as the UNFOLD[1] and TSENSE[2] techniques deal with the problem from a Fourier aliasing perspective. UNFOLD performs temporal 
low-pass filtering, which smoothes the motion of interest and the performance of TSENSE relies additionally on 
accurately estimating and tracking coil sensitivities[3]. Lastly, these techniques work better on a Cartesian grid. We 
propose an algorithm exploiting temporal correlations by running a Kalman filter on the raw data. With an N-interleaved 
spiral acquisition, we are able to reconstruct videos running at N times the raw rate, thus revealing a better temporal 
resolution. Moreover, parallel imaging ability is not compromised, and the 
reconstruction time is short; the only major components being two gridding and 
two Fourier transform operations. We compare our algorithm with the sliding 
window reconstruction, which increases the frame rate by the same amount and 
provides a rapid reconstruction. 

Theory: We use the dynamic system given in Fig. 1 to model the temporal 
variation of the heart. Here, Sn represents the image at time n, precompensated 
by the deapodization function, and F and Gn denote the Fourier transform 
operator and the time-dependent gridding operator, respectively. Un is the 
change in the image from time n-1 to n, and Wn is the observation noise with a 
covariance of Σ=σ2I, where I is identity matrix. Both Un and Wn are modeled as 
zero-mean random processes. Xn denotes the raw data obtained by one spiral 
interleaf at time n. 

The Kalman filter gives a precise solution to causal filtering of a process 
based on a finite number of measurements, without assuming stationarity[4]. It is 
extensively used in tracking applications to get a good estimate from noisy data 
by utilizing temporal statistics of the dynamic system. We apply the Kalman 
filter to our imaging model. Since the observations are the raw data obtained by 
each interleaf, we are able to reconstruct an image from each single interleaf.  

Methods: The RTHawk real-time system[5] is used with a gradient-echo pulse 
sequence and a 4-interleaf bidensity spiral readout. FOV is 20 cm with a 
resolution of 2 mm. No ECG-gating or breath-holding was used. A small region 
around the center of the k-space is fully sampled by each interleaf. The 
covariance matrix of Un corresponding to the remaining high frequency data is 
approximately diagonal[6]. This leads to huge computational savings. The very 
center of the k-space is reconstructed in a conventional way and the remaining 
part is fed to the Kalman filter. These reconstructions are then combined by 
simple summation. The statistical estimates required to initialize the filter are 
obtained by using the full spatial data, where a time window may be used for 
real-time reconstructions. The noise variance estimate is used as a parameter to 
trade image denoising for faster tracking. 

Results: Several experiments were performed on five volunteers. The imaging 
slices were chosen to include valve leaflets. The first column of Fig. 2 shows 
four consecutive frames obtained by sliding window reconstruction, and the 
second column shows the corresponding frames obtained by Kalman filtering. 
These frames capture the valve as it opens up and falls out of the imaging slice. 
The time between consecutive rows is approximately 21.3 ms.(~ 47 fps) Here, 
we opted for faster tracking by scaling down the noise variance estimate. Even 
in this case, the second column has better SNR. Although individual sliding 
window reconstruction frames appear very acceptable, examining all four frames 
reveals the temporal low-pass filtering: Differences between the frames are 
minimal and tracking is sluggish. In contrast, the Kalman frames of the right 
column show more variations. Since only the raw data coming from a single 
excitation are used, we obtain better tracking. Lastly, we expect to obtain even 
better reconstructions as various excitation and reconstruction parameters(flip 
angle, gradient spoiling cycles, number of interleaves, etc.) are optimized. 

Conclusions: We demonstrated the application of Kalman filtering to real-time 
acquisitions. Temporal resolution is increased by the number of interleaves and 
the noise level is decreased as well. Our algorithm has a better temporal 
response than the sliding window reconstruction. Using raw data coming from 
only one interleaf allows swifter motion tracking. Our algorithm performs a 
rapid reconstruction and does not compromise parallel imaging capability. 
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