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Introduction: The GRAPPA Operator Gridder (GROG) has been recently demonstrated for the regridding of non-Cartesian datasets [1].  By using 
the properties of the GRAPPA Operator described in [2] and [3], a general equation for shifting points in arbitrary directions and distances in k-space 

can be written:
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where n and m are the distances to be shifted in the x and y-directions, respectively, and Gx and Gy are base weights for a shift of 1∆kx or 1∆ky.  This 
equation allows non-Cartesian points to be shifted to the nearest Cartesian locations.  However, for most trajectories, a separate Cartesian calibration 
dataset was needed to determine the base weights.  In this abstract, a self-calibrating scheme for GROG is proposed which allows the base weights Gx 
and Gy to be calculated directly from the data themselves.  Using the pairs of acquired non-Cartesian points that are close to each other (i.e. n<1∆kx 
and m<1∆ky), the equation above can be either solved iteratively or analytically for Gx and Gy.  For radial and spiral applications, which are quite 
common in non-Cartesian imaging, the GROG equations above can be solved analytically; this approach is described here. 

             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The self-calibrating GROG method is demonstrated here for radial and spiral trajectories.  In vivo radial data (12 channel, 256 projections, 512 read-
out points) were acquired using a 1.5 T Siemens Avanto scanner (Siemens Medical Solutions, Erlangen, Germany), and in vivo data spiral data (8 
channel, 4 spiral arms, 10472 read-out points) were acquired using a 3T Trio scanner (Siemens Medical Solutions) using a constant-linear-velocity 
trajectory.  Before calculation of the weights, the spiral trajectories were interpolated to yield constant-angular-velocity trajectories, which can be 
resorted into radial trajectories.  The base weights Gx and Gy were calculated using the formulas given above, and the data were gridded using 
Equation 1 with the appropriate n and m values.  As a reference image, the radial and spiral data were also regridding using the gold-standard 
convolution gridding of Jackson et al [4], with a Kaiser-Bessel window (width =3), a twice oversampled grid (s=2), and the standard Ram-Lak 
density compensation function. 
 

Results: The radial self-calibrated GROG and gold-standard convolution gridding 
images are shown in Figures 1a and 1b, and the corresponding spiral images are shown in 
Figures 2a and 2b.  As can be seen from the images, the contrast and resolution are not 
affected by the use of SC-GROG. 
 
Discussion:  SC-GROG is a method by which non-Cartesian data can be resampled onto a 
Cartesian grid without the need for additional calibration data (as in GROG).  The self-
calibrating property of SC-GROG leads to better image quality than standard GROG, as there 
are no data mismatches between the non-Cartesian data and the Cartesian dataset.  In addition, 
SC-GROG requires no additional information or parameters besides the data and trajectory; no 
DCF or convolution window must be specified, as in convolution gridding.  The self-calibrating 
GROG method also works for 3D non-Cartesian datasets (data not shown), and requires far less 
memory than standard gridding methods.  Finally, SC-GROG can also be used to regrid 
undersampled non-Cartesian data, or even single points, which is not possible with convolution-
based methods.  Thus, SC-GROG is a promising alternative to standard gridding methods given 
the ubiquitous nature of mutli-channel arrays. 
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Methods: For each projection in a multi-channel radial acquisition, the following equation can be 
written and solved for Gθ: 

),(�),( 1 rr kSGkS θθ θ

rr

⋅=+
  where   m

y
n

x GGG ��� ⋅=θ  

Using the angular weight sets for each projection, and taking the matrix logarithm of the resulting set of 
equations yields the following: 
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These equations can be reordered into another set of linear matrix equations, which can be solved coil-by-coil 
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By taking the pseudo-inverse of this equation of the distance matrix, the matrix logarithms of the weights sets 
can be found; the base weights themselves are calculated by taking the matrix exponential of the logarithmic 
weights.  Although this method was developed for radial trajectories, Archemidian spiral trajectories can be 
resorted (using time domain interpolation, if necessary) into quasi-radial trajectories, to which the same self-
calibration method can be applied to arrive at the base weights.  
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Figure 1: Calculation of self-calibrated GROG weights 
for the radial trajectory begins with the calculation of 
angular weights, Gθ, along each projection.  These 
angular weights are simply the base weights, Gx and 
Gy, to the power of the distance between points in each 
direction.
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Figure 3 left:   Spiral image regridded with SC-GROG.
Figure 3 right: Gold-standard convolution gridding spiral image.

Figure 2 left:   Radial image regridded with SC-GROG.         
Figure 2 right: Gold-standard convolution gridding radial image.

Figure 3 left:   Spiral image regridded with SC-GROG.
Figure 3 right: Gold-standard convolution gridding spiral image.

Figure 2 left:   Radial image regridded with SC-GROG.         
Figure 2 right: Gold-standard convolution gridding radial image.
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