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Introduction  
Different diffusion metrics, such as mean diffusivity (MD), fractional anisotropy (FA) and 
mode, are sensitive to different changes in the microstructure of the brain. Using a single 
metric to identify differences between a patient group and a control group ignores much of the 
information contained in the diffusion tensor in terms of the other unused metrics. We 
therefore investigated whether Linear Discriminant Analysis (LDA) provides a robust 
multivariate method to identify microstructural damage in a group of young professional 
boxers. In general, LDA writes the data as a linear discriminant function of the form: 

y = a0 + a1x1 + a2x2 + ... + anxn  

where ai are the linear discriminant coefficients, and xi are the metrics being used. LDA 
determines the ai in such a way as to obtain maximum discrimination between the two groups 
of interest. As LDA maximizes group difference, the y-value for each subject at each voxel 
provides an optimal variable for statistical analysis. LDA has been used by other researchers: 
with combined MRI and MRS data to identify brain tumors1; and using two-dimensional 
histograms of apparent diffusion coefficient and FA to classify different neurological 
conditions2. This study takes this approach a step further by applying it to voxel based DTI 
analysis. 

LDA has two other features. First, when statistically normalised data are used as input, the ai coefficients give the relative contribution of each metric to any 
differences between the two subject groups. Second, LDA has the possible clinical application of identifying whether a given individual belongs to the patient 
group (i.e. has similar brain damage) or not. This is done firstly by finding the coefficients of the linear discriminant function, ai, and then evaluating that function 
for a given individual. If y < 0 the subject is classified as a control; if y ≥ 0 the subject is classified as belonging to the patient group. When group membership is 
already known, as in the current study, cross-validation of the LDA classification can be made, and its predictive ability determined from the proportion of subjects 
successfully classified at a particular voxel.  

 
Methods 
In vivo data were acquired from 59 professional male boxers aged 22-31years, and 12 age-matched male control subjects. Scans were performed on two GE 1.5T 
MRI scanners with 22mT/m gradient strength. A quadrature head coil was used, and in all cases the slice thickness was 5 mm, with no intersection gaps. A 2D 
spin echo EPI acquisition was used with TE/TR = 100ms/ 12s. An acquisition matrix of 128×128×30 and 1.7×1.7×5 mm3 voxels in 26 gradient directions with b-
values between 815 and 1152 s.mm-2, and 6 acquisitions with no diffusion weighting, was used. Conventional univariate analyses were compared with the 
multivariate LDA analysis of the same dataset, using SPM2 with False Discovery Rate (FDR) correction for multiple comparisons, at a level of significance of 
0.05, and a minimum cluster size of 8 voxels.  
 
Results and Discussion 
Overall, MD was found to be the most sensitive of the three univariate metrics, so it was used as the comparison with the LDA analysis. Fig. 1 shows that LDA is 
more sensitive for both cortical and subcortical damage than MD alone. A voxel where LDA found a highly significant difference between boxer and control 
groups was selected as an example. It is circled in Fig. 1, with MNI coordinates [36 -14 12]. The linear discriminant function for that voxel was: 

 y = 0.0251+ 0.0087 × MDz - 0.0081 × FAz - 0.0369 × Modez  

where the z subscript refers to normalised values (to a mean of 0 and standard deviation of 1). 
The coefficients show that at this voxel, mode was the strongest metric, with MD and FA 
making similar, weaker contributions. This is an important feature of LDA: the best predictor 
is automatically more heavily weighted than metrics with weaker correlations. The predictive 
ability of LDA at voxel [36 -14 12] was 90% using all three metrics. To provide a 2-D 
illustration of LDA, we used MD and FA as they are the more commonly used metrics. Fig. 2 
shows the expected result that head injury causes MD to increase and FA to decrease3, and also 
the separation between the two groups achieved by LDA. The effect of removing mode, the 
strongest metric at this voxel, from the analysis was to reduce the predictive ability in the bi-
metric LDA to only 73%.  
 
Conclusions 
Using DTI data, LDA multivariate analysis was more sensitive than univariate MD analysis in 
detecting the diffuse nature of cortical and subcortical damage of repetitive mild closed head 
injury. This study also illustrates two other features of LDA: being able to determine which 
metric is making the greatest contribution to any identifiable difference between the two 
groups; and possibly being able to make an important contribution in the clinical setting, 
especially for future study when used at the ROI scale. When support for a positive or negative 
diagnosis is required, LDA may be able to provide such a binary decision, based on multiple 
components. As well as having the flexibility to be multimodal1, LDA could also 
accommodate non-imaging parameters related to the study, which would further increase its 
sensitivity.  
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Fig. 1.  Axial and coronal views of regions where the 

boxers� brain maps are statistically different from 
the controls� (FDR correction, α=0.05, k=8), for 
either MD only, LDA only or both measures.  

 
 
Fig. 2.  Scatterplot for voxel [36 -14 12] with the linear 

discriminant function overlaid. 
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