

Is diffusion-weighted imaging helpful for detection of small hepatocellular carcinoma in cirrhosis or chronic hepatitis: preliminary quantitative study at 3-T

X-Y. Wang^{1,2}, H. Wang^{1,2}, and X-X. Jiang^{1,2}

¹Radiology Department, Peking University First Hospital, Beijing, China, People's Republic of, ²Functional imaging center, Advanced academy of interdisciplinary sciences, PKU, Beijing, China, People's Republic of

Purpose: To explore whether diffusion-weighted imaging was helpful for detection of small hepatocellular carcinoma (HCC) in patients with cirrhosis or chronic hepatitis by comparing with T2-weighted imaging at 3-T.

Materials and Methods: Nine patients with 19 small hypervascular HCCs (less than 3 cm in diameter) were included in the study. Chronic hepatitis or cirrhosis was related to hepatitis B viral infection (n=7) and alcohol abuse (n=2). The diagnosis of HCC was made as follows: Two lesions in two patients were confirmed by operation. One lesion in one patient was confirmed by biopsy. Sixteen lesions in 6 patients were confirmed by at least two imaging modalities among CT during arterial portography (CTAP), CT during hepatic arteriography (CTHA), and iodized-oil CT after transcatheter arterial chemo-embolization. Diffusion-weighted imaging with single-shot echo planar imaging and transverse T2-weighted imaging with respiratory triggering and fat saturation were performed on a 3-T MR unit using an 8-channel torso phased-array coil. Diffusion-weighted imaging was acquired with parallel imaging technique, and the phase acceleration was 2 Ph. Parameters were as follows: $b=800$ and 0 sec/mm^2 ; TR/TE, 2300/56 ms; slice thickness, 6 mm; intersection gap, 1 mm; FOV 38×38 cm; matrix, 128×128; NEX 2. Parameters of T2-weighted imaging were as follows: TR/TE, 6600-8600/102 ms; echo train length 17; bandwidth 62.5 kHz; slice thickness, 6 mm; intersection gap, 1 mm; FOV 38×38 cm; matrix, 288×224; NEX 2. The signal intensity (SI) and apparent diffusion coefficient (ADC) values of HCCs and liver were measured at workstation. Contrast-to-noise ratio (CNR) and contrast ratio (CR, the ratio of SI of lesion/liver) were calculated. CNRs and CRs obtained with diffusion-weighted and T2-weighted images, and ADCs of HCC and liver were compared using Mann-Whitney test.

Results: Diagnostic images were obtained in all patients (Fig. 1-2). Two lesions were excluded because of artifacts on diffusion-weighted images. Thus 17 lesions were analyzed. The CNRs obtained with T2-weighted images (27.94 ± 16.56) were significantly higher than those with diffusion-weighted images (17.61 ± 14.26). There were no significantly different ($p>0.05$) between the CRs obtained with T2-weighted images (1.81 ± 0.53) and diffusion-weighted images (1.99 ± 0.71). There were no significantly different ($p>0.05$) between the mean ADCs of HCCs (1.14 ± 0.27) and liver (1.20 ± 0.18), either.

Discussion: HCC is the most common primary hepatic malignant tumor and develops predominantly in patients who have underlying chronic hepatitis or cirrhosis. Early reports suggested that diffusion-weighted imaging was useful for increased detection of HCCs^[1]. However, Perfusion effects usually cause larger signal attenuation than diffusion effects on images with a small gradient b-factor. On the basis of this theory, the ADC value calculated from images with small gradient b-factors is thought to be the value most strongly influenced by flowing spins rather than molecular diffusion. Investigators have reported the mean D-value differences between HCC, cirrhotic liver and noncirrhotic liver were insignificant^[2]. The results of our study using large gradient b-factor with high field strength MR unit suggested that the diffusion-weighted imaging was not superior to T2-weighted imaging for detection of small hepatocellular carcinoma in cirrhosis or chronic hepatitis.

Conclusion: Diffusion-weighted imaging may be little helpful for detection of small hepatocellular carcinoma in cirrhosis or chronic hepatitis.

References: [1] Ichikawa T, et al. AJR 1998; 170: 397-402. [2] Moteki T, et al. JMRI 2006; 24: 637-645.

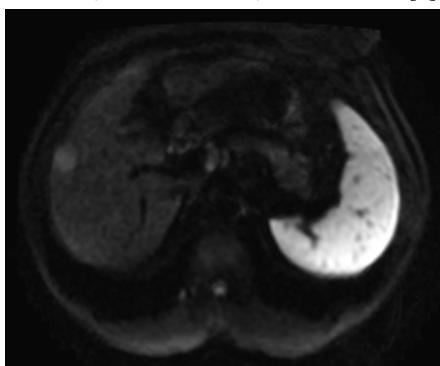


Fig. 1 Diffusion-weighted image ($b=800 \text{ sec/mm}^2$)

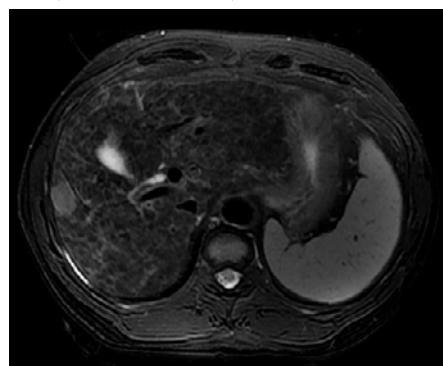


Fig. 2 T2-weighted image