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INTRODUCTION 
Accurate T1 relaxation time parameter estimation is essential for a wide variety of quantitative MR applications; for example, obtaining accurate T1 values can be crucial 
in problems such as quantitative contrast enhanced imaging studies, image segmentation and tissue characterization, and absolute metabolite quantification in NMR 
spectroscopy.  Typical experiments designed specifically for T1 estimation often involve acquiring multiple datasets, with the timings within the experiment chosen 
differently for each dataset.  T1 can then be estimated by a parametric fitting of the data with signal intensity formulas derived from the physics of the MR experiment.  
Despite the wide variety of possible T1 measurement schemes [1], the resulting model signal intensity function often takes the following simplified form (assuming 
proper phase cycling and/or crushing and that the RF pulse flip angles might be different from their nominal values) [2]: 
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where N is the number of experimental datasets acquired with different timings, and the parameter C will be small if the RF pulse flip angles are close to perfect.  For a 
long time, it has been argued that statistically-motivated criterion perform better than more heuristic methods [3].  Using maximum likelihood (ML) estimation, for 
example, yields a standard nonlinear least-squares (NLS) problem: 
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with the d[n] values representing the collection of acquired data.  Many authors have solved this 4-parameter curve-fitting problem directly using standard iterative 
methods, such as Levenberg-Marquardt or Gauss-Newton algorithms.  However, iterative approaches can be problematic, particularly in cases when the data is very 
noisy; this is because the NLS problem is not convex everywhere, meaning that iterative algorithms can miss finding globally optimal solutions.  Another problem is 
that direct optimization of (2) can sometimes yield non-physical and/or improbable parameter values.  Specifically, the coefficients A, B, and C all are related to 
physically meaningful experimental parameters and cannot take on arbitrary real values. Thus, there is a large amount of prior information that is not captured by the 
unconstrained NLS formulation of the problem.  While a constrained NLS formulation of the problem can guarantee reasonable fitted parameter values, the constrained 
problem is more difficult to solve than the unconstrained problem, and a good initial starting guess for the parameter values is essential for accurate results. 
PROPOSED METHOD 
To mitigate some of the above problems, we use the variable projection (VARPRO) algorithm for separable least squares problems [4] to reduce the four-dimensional 
minimization problem (2) to a two dimensional maximization problem, noting that the least-squares optimal values of A and B have a closed form expression if N>2 for 
fixed values of C and T1 (for nominal RF pulses, VARPRO reduces the optimization to a one-dimensional maximization problem since C can be fixed at 0).  Through 
brute force evaluation of the simplified cost function for a range of potential C and T1 values, we can generate images of the cost function such as that shown in Figure 1, 
which was simulated according to (1) using A=1, B=-0.9, C=0.05, and T1=800ms, for 6 different times τ.  The shape shown in the figure is very representative of those 
we have seen in T1 estimation; empirically, fitting data of this type has consistently yielded cost functions with a curved ridge-like structure oriented as in the figure 
(though the curvature and the width of the ridge change as the A, B, C, T1 and τ values are changed), and the NLS T1 value consistently is found on top of this ridge.  As 
the noise level increases and the cost function changes, it becomes common to find the NLS T1 and C estimates at unrealistic points on the ridge; for example, it is 
common to find C estimated within the range of 0.8-0.9 and a correspondingly large value of T1 when the simulated noise standard deviation is on the order of 0.1.  This 
large estimated value directly goes against the prior knowledge that C should be close to 0 if the RF pulses are near their desired values.  Moreover, if attention is 
restricted to that range of the cost where C is close to 0, the most likely values of T1 fall into a much narrower range than if C were allowed to grow unrealistically large.  
Many other possibilities for incorporating prior information are possible, and the particular choices will depend both on the strength of the prior information and the 
resulting computational complexity.  The approach presented here is fast and efficient, rather than exploiting the full range of prior information that might be available.  
Simulations indicate that this approach estimating parameter values can be more accurate that standard unconstrained NLS.  Some in vivo results are shown in Figure 2. 

 
Fig. 1:  Cost function for simulated data.  ML optimization finds 
the T1 and C that maximize this function, and the maximum will 
be found along the bright ridge.  However, noise can easily 
perturb the optimal solution to correspond to overly large values 
of  C, while we should expect C to be near 0. 
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Fig. 2: Experimental T1 parameter estimates (in ms) from an in vivo mouse brain shown 
reconstructed using VARPRO with a restricted range of C (left) and with unconstrained least-
squares (right).  The restriction to reasonable values of C greatly improves the stability and 
quality of the estimate, which is poor in the unconstrained case because of the behavior of the 
least-squares cost function.  The large T1 estimates near object boundaries in both images are 
artifacts from motion during the experiment. 

CONCLUSION 
The VARPRO algorithm provides a fast and efficient method for finding meaningful T1 estimates (or reasonable initial guess values for constrained NLS fits) within a 
realistic range of possible values, even with noisy data for which traditional unconstrained NLS fits can provide physically unrealistic answers. 
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