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INTRODUCTION. Magnetic susceptibility is important in MRI, since it is a source of contrast [1,2] and quantitative measurements are desired for 
certain diagnoses [3].  To date, no numerically tractable methods exist for calculating arbitrary susceptibility distributions.  An important contribution 
was made by Leigh and Li [4] in 2004 regarding the formulation of a solvable inverse problem.   The authors admit however that the method is 
numerically intractable even for small MRI data sets.  Proposed here is a means of sidestepping the numerical difficulties by recasting the inverse 
problem as an iterative model fitting problem which does not require massive matrix manipulation. 
METHOD.  The inverse problem is defined exactly as in [4].  Varying susceptibility χ will create small changes in the magnetic field that can be 
measured [5].   The magnetic field and the susceptibility over the whole object K are related via  

( ) ( ) ( )
( ) ( )rRDF
rB

rBrB
d

r

ez

rK

r

r

rr

r

rr

r

r

=
−

=
−

−
∫
≠ 0

2

2 1cos3
)(

4

1 ρ
ρ
θρχ

π
 

where Bz is the measured magnetic field map, Be is the background field, B0 is the main field and θ is the angle between the points r
r

and ρr .  RDF is 
the unitless residual difference field.  This can be written discretely: given the discrete position (i,j,k) and susceptibility χq of every voxel q, the RDFp 
produced for every voxel  p at discrete position (x,y,z) can be calculated as 
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The authors of [4] recommend calculating all the single voxel demagnetization factors ηpq to create the transform matrix A.  The vector of all RDFp 
values b and all χq values x are related by the matrix equation Ax=b which can be solved using inverse methods.  This is the computationally 
impossible step since A is huge: for a 256³ voxel volumetric image the matrix would occupy 512 terabytes, and even for 64³ voxel images the matrix 
is 128 gigabytes.  We propose that instead of calculating the transform matrix A we need only replicate its action.  From the definition of the single 
voxel demagnetization factor, ηpq=ηpq(i-x,j-y,k-z), it can be seen that the above sum is in fact a 3-dimensional convolution.   
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Here we have dropped the pq subscripts.  The convolution kernel is the field of single voxel demagnetization factors calculated with respect to the 
origin.  Calculating this convolution is not computationally expensive even for large data sets and it opens the door for iterative solving techniques. 
An experiment was conducted on a 0.5-T Phillips Gyroscan system using a water phantom containing five test tubes with gadolinium solutions of 
known susceptibilities.  A 64³ voxel field of view contained the whole phantom.  The back ground field Be was measured by imaging the phantom 
without the test tubes present and Bz measured once the tubes were in place.  After subtraction and division to produce the RDF, any remaining linear 
terms in the field were removed so that only dipole fields remained.  The susceptibility was then solved for iteratively using LSQR in MATLAB. 
RESULTS. The iterative technique quickly converged to reasonable values of χ.  Each convolution took 3 seconds on a Pentium IV and the results 
converged after 1000 iterations.  The fast field echo imaging technique used is particularly prone to susceptibility artefacts and as a result, there was 
no signal available in the immediate vicinity of the test tubes.  The RDF is shown in figure 1 with the voids evident.  These signal voids caused the 
solver to err in calculating the absolute values of χ  because a larger diameter tube with a lower susceptibility is indistinguishable from a small tube 
with higher susceptibility in the RDF produced outside the voids.  Figure 2 shows the solved susceptibility values.  The mean values of χ within each 
tube from the solver were adjusted to correct for the erroneously large tube sizes by calculating the susceptibility that would produce the same far 
field if confined to the actual test tubes.  The adjusted values of χ correlated linearly with the actual values as shown in figure 3. 

 
Figure 1.  Residual difference field map (unitless) for 
a cross sectional slice through five tubes with different 
susceptibilities. Signal voids are evident. 64 by 64 
pixels, 208 mm by 208 mm.  χ relative to water are  
#1: 34, #2: 17, #3: 8.5, #4: 3.4, #5: 9.1 (all ×10-6). 

 
Figure 2.  The same slice as Fig.1 through the 
iteratively calculated susceptibilities (unitless).  The 
diameters of the real tubes are drawn with solid lines, 
the incorrect larger diameters from the solution are 
shown with the dotted lines. 
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Figure 3. Susceptibilities ×10-6. Actual χ 
relative to water (χwater = -9.05×10-6) plotted 
versus the value of χ calculated from the RDF 
using the iterative technique and adjusted to 
correct for the misjudged diameter. 

CONCLUSION.  The realization that the transform matrix containing the single voxel demagnetization factors need never be formed is important.  
For 256³ images the matrix would occupy 512 terabytes of memory, the convolution kernel for such a case occupies a mere 32 megabytes and its 
application is trivial.  The problem of solving for susceptibility given the RDF becomes possible.  The RDF was easily computed in this case because 
the background field was so easily removed, this is not the case in general, especially when parts of the object extend outside the field of view.   But 
other methods exist to remove Be for more complicated cases [4] and once the background field is removed, solving for the susceptibility is possible.  
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