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Recently, we and others showed that microvessel geometry is a significant 
determinant of susceptibility-based contrast. This is especially relevant when 
imaging tumors with their characteristically anomalous vascular trees. In 
such cases, the traditional cylindrical perturber (CP) approximations 
employed by most susceptibility models may be inadequate. Here we describe 
a novel simulation technique, the finite perturber model (FPM) that 
circumvents shortcomings of traditional fixed-geometry approaches, and 
enables us to study susceptibility-induced contrast arising from arbitrary 
microvascular geometries in 3D, such as those typically observed during 
tumor angiogenesis. The excellent agreement of the FPM with theory coupled 
with its computational efficiency demonstrates its potential to radically 
transform our understanding of the factors that engender susceptibility 
contrast in tumors. 

INTRODUCTION Several models have been developed to help understand the 
factors that contribute to susceptibility-induced MR signal change, and quantify its 
association with the underlying microvascular geometry [2, 3]. However, we 
recently demonstrated that the grossly different vascular morphology of tumors 
due to tumor angiogenesis, compared to normal brain, can profoundly influence 
susceptibility-induced MR contrast [4]. While computationally convenient, the CP 
approximations employed by most susceptibility models for representing tumor 
vessels may be inadequate. Traditional CP models also 
assume the magnetic field is constant along the length 
of the vessels, allowing such effects to be simulated in 
2D. However, any vessel geometry deviating from the 
cylindrical model would need to be simulated in 3D, 
since induced field gradients are a function of the 3D 
microvessel geometry. In addition, the CP approach 
assumes large inter-vessel separations, so that effects 
of overlapping field gradients can be disregarded. This assumption may be 
inappropriate for tumors – wherein vessel density may be low, but due to larger 
caliber tumor vessels, the inter-vessel distances may not be negligible. Finally, 
overlapping field gradients may become significant at high contrast agent doses 
and dominate the eventual image contrast observed. Our original FPM approach 
[1] circumvented many of the above drawbacks [1], but was computationally less 
efficient as it employed an “oct-tree” or “nested-cube” data structure for 
representing the vascular tree. The primary motivations for developing this new 
FPM approach were to develop a 3D technique applicable to arbitrarily-shaped 
(tumor) microvessels that was computationally more efficient and to gain insight 
into the biophysics of “angiogenic contrast”. 

METHODS “Finite Perturber Model (FPM)” For Computing Field 
Perturbations: FPM differs from standard numerical methods such as finite 
differences in that it does not solve Maxwell’s equations directly. Instead, the 
underlying vessel geometry or “substrate” is divided into minute “perturbers”. To 
calculate the field shift at a given point, the shift due to each perturber is calculated 
independently.  The total field shift is then calculated as the sum of the field shifts 
from all the perturbers. Since we cannot completely fill the vascular geometry 
using spheres of finite radius due to gaps remaining between spheres, we defined 
an infinitesimally small cube as the perturber. In order to calculate the magnetic 
field shift due to a cube of side ‘s’, we considered a sphere of radius ‘a’, half the 
length of the side of the cube, embedded in the cube (Fig. 1). We then 
approximated the magnetic field shift for the cube at a test point p by: 
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Where, a = sphere radius, r = dist. from cube center, θ = angle with B0. As there is 
a 1/r3 dependence of ∆Bcube(p), the error introduced by a coarse approximation to 
the substrate at a relatively large distance from p is negligible. The above equation 
yields the magnetic field perturbation from a single finite perturber. To calculate 
the total field perturbation from the vasculature, we let the radius a of the finite 
perturber become infinitesimally small, and integrate over the entire space: 
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Where, V(x,y,z) is a function that indicates whether the given point is inside the 
vasculature; i.e.: 
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Next, take the 3D Fourier transform of both sides of this equation. 
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The above integral is the 3D convolution of the vascular structure with the finite 
perturber field and can be rewritten as: 
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The above is equivalent to: 
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Taking the inverse Fourier transform of the above equation, we get: 
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This equation is an efficient means of calculating the magnetic field perturbation.  

Simulation Procedure: 1. Convert input representation of vascular structure into a 
3D grid. 2. Calculate 3D magnetic field map corresponding to the finite perturber. 
3. Calculate 3D FFT of the vascular structure. 4. Calculate 3D FFT of the finite 
perturber field map. 5. Perform the point-wise multiplication of two 3D FFT’s. 6. 
Calculate the inverse FFT of this product. Once computed the field, we modeled 
proton diffusion by Monte Carlo methods employing a diffusion coefficient (D) of 
1.0 µm2/ms. 10000 protons were randomly placed in the simulation universe with 
diffusion permitted across vessel walls. The final MR signal was estimated using: 

S(t) =
1

N
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Where, N = no. of protons, φn(t) = phase of nth proton at time t given by: 

φn (t) = γ∆B(pn ( j∆t))∆t
j =1

t / ∆t
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Where, ∆t=simulation time step, γ=267.6×106rad/T, pn(t)=position of nth proton at  

time t, ∆B(p) = magnetic field shift at position p. Prior to applying the FPM to the 
anatomical substrate, we validated its numerical accuracy by comparing it with 
analytically obtained values of the magnetic field perturbations produced by a 
cylindrical perturber. The anatomical substrate for our simulations was a digitized 
3D representation of a cerebrocortical capillary network (≈70µm3, kindly provided 
by Dr. Tony Hudetz, Dept. of Anesthesiology, Medical College of Wisconsin) [5].   

RESULTS Fig. 2 shows numerical result from FPM plotted vs. results from the 
analytical equation. It can be seen 
that except for the boundary of the 
cylinder, there is excellent 
agreement between the two. Fig. 3 
Inset illustrates the reconstructed 
cerebrocortical substrate; foreground 
is the estimated MR signal for 
susceptibilities typical of 
deoxygenated blood. Finally, Fig. 
4a illustrates a slice though the 3D 
magnetic field map computed for 
the cerebrocortical substrate – one 
can clearly see field perturbations 
around vessels that are qualitatively 
consistent with classic dipolar 
patterns, while Fig. 4b shows the 
field isolines for the same slice. 

DISCUSSION/CONCLUSIONS 
We have successfully demonstrated 
both the numerical accuracy and 
feasibility of a novel technique for 

estimating the susceptibility-induced MR signal for arbitrary microvascular 
geometries. Further, our technique allows us to visualize these effects in 3D, in 
exquisite detail, a feat to the best of our knowledge that has not been demonstrated 
to date. Since this is a work in progress, we are in the process of assessing the 
effects of tumor angiogenesis on the MR signal and investigating the BOLD 
contrast mechanism.  References 1. Pathak et al., 1331;ISMRM:2002; 2. 
Boxerman et al., MRM, 34(4):1995; 3. Kiselev MRM; 46(6):2001; 4. Pathak et al., 
JMRI; 18(4):2003; 5. Hudetz et al., Microvas Res, 46:293, 1992. 
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