It is Not Possible to Design a Rotationally Invariant Sampling Scheme for DT-MRI

D. K. Jones ${ }^{1}$, C. G. Koay ${ }^{2}$, and P. J. Basser ${ }^{2}$
${ }^{1}$ CUBRIC and School of Psychology, Cardiff, Wales, United Kingdom, ${ }^{2}$ STBB/LIMB/NICHD, National Institutes of Health, Bethesda, MD, United States

INTRODUCTION: The choice of gradient sampling orientations for DT-MRI experiments has exercised many groups in the field. Of particular interest is the design of sampling schemes that will ensure that the error / variance in tensor estimates is independent of the relative orientation of the tensor to the reference frame established by the sampling vectors, which others have termed 'statistical rotational invariance' or ' $S R I^{1,2}$. Previous work has identified a relationship between the condition number of the quadratic encoding matrix, formed from the gradient sampling orientations, and the variance in the estimated diffusion tensor ${ }^{3}$. Batchelor et $a l^{4}$ showed that certain sampling schemes (e.g., the dual-gradient scheme) had rotationally variant condition numbers while, those derived from the vertices of an icosahedron had rotationally invariant condition numbers. Thus, schemes based on vectors pointing to the vertices of an icosahedron (or tessellated icosahedrons) cause initial excitement. However, Jones ${ }^{2}$ showed that, in discord with this theory, not all icosahedral schemes are the same - and that rotationally invariant condition number is a necessary but insufficient requirement for rotational invariance. A more general framework has been proposed ${ }^{1,5}$ - which provides a template for sampling schemes in terms of the fourth order precision matrix. Previous theoretical considerations suggested that, under the linear framework, a statistically rotationally invariant sampling scheme could not be designed, except for the trivial case of isotropic tensors ${ }^{5}$. Here, we address an important and long outstanding question in the DT-MRI literature, i.e. In the limit of an infinite number of sampling orientations, can one design a sampling scheme which is statistically rotationally invariant?

THEORY: By combining results from previous works ${ }^{1,5,6}$, we can show how the precision matrix, \mathbf{M}^{\prime}, in estimation of the diffusion tensor, \mathbf{D}, can be expressed in terms of the elements of the m unit sampling vectors, \mathbf{g}, the b-values, b_{m} and resultant \mathbf{B} matrices, \mathbf{B}_{m} (where $\mathbf{B}_{m}=b_{m} \mathbf{g}_{m}{ }^{\mathbf{T}} \mathbf{g}_{m}$), via Eq. [1], where $\alpha=0$ and 1 for nonlinear and linear regression, respectively:

It has been shown that for the precision matrix to be statistically rotationally invariant, it should take the following general form ${ }^{1,7}$:

$$
\mathbf{M}_{\mathrm{iso}}=\left[\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \tag{2}\\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \mu & 0 & 0 \\
0 & 0 & 0 & 0 & 4 \mu & 0 \\
0 & 0 & 0 & 0 & 0 & 4 \mu
\end{array}\right]
$$

In Eq. [1], $\mathbf{M}_{4,4}^{\prime}=4 \mathbf{M}_{1,2}^{\prime}, \mathbf{M}_{5,5}^{\prime}=4 \mathbf{M}_{1,3}^{\prime}$ and $\mathbf{M}_{6,6}^{\prime}=4 \mathbf{M}_{2,3}^{\prime}$, which on comparison with Eq. [2] means that λ must be equal to μ.. To conform to the prescription in Eq.
[2], all elements of M' should conform for all possible tensors. Therefore, if we can find just one example of non-conformance, we have shown that the design is not SRI. To make progress, we examine just the non-zero elements of M', which contain only even powers of the elements of sampling vector \mathbf{g}. Thus, we define an even function of these elements, as: $\kappa\left(\mathbf{g}_{p}\right)=\left(g_{x_{p}}\right)^{2 l}\left(g_{Y_{p}}\right)^{2 m}\left(g_{z_{p}}\right)^{2 n}$. Summing over an infinite number of directions, is the same as integrating over all angles - so we re-
parameterize \mathbf{g} in spherical co-ordinates, $\mathbf{g}=[\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi]$, thus the form for the infinite sums in Eq. [1] becomes

$$
\begin{equation*}
<f>=\frac{b^{2}}{4 \pi} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \exp (-2 \operatorname{Tr}(\mathbf{B D})) \kappa(\mathbf{g}) \sin (\theta) d \theta d \phi \tag{3}
\end{equation*}
$$

If we assume \mathbf{D} is aligned with principal lab frame, (i.e., $\mathbf{D}_{\mathrm{ij}}=\delta_{\mathrm{ij}} \lambda_{\mathrm{i}}$, where δ_{ij} is the Dirac delta function, and λ_{i} are eigenvalues), then

$$
\begin{equation*}
<f>=\frac{b^{2}}{4 \pi} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi}\left(g_{X}\right)^{2 l}\left(g_{Y}\right)^{2 m}\left(g_{Z}\right)^{2 n} \exp \left(-\left(s_{1} g_{X}^{2}+s_{2} g_{Y}^{2}+s_{3} g_{Z}^{2}\right)\right) \sin (\theta) d \theta d \phi \tag{4}
\end{equation*}
$$

where $s_{i}=2 b \lambda_{\mathrm{i}}$, for $i=1,2,3$.
First, we consider the trivial case of isotropic tensors, i.e., $\lambda_{\mathrm{i}}=\boldsymbol{\lambda}$. The exponent in Eq.[4] can be factored out as a scalar multiplier, and the result is the sum of an infinite number of sampling orientations which Batchelor et al. ${ }^{4}$ have previously shown takes the form in Eq. [2]. For a more general case, however, the evaluation of Eq.[4] becomes more complex. Space prohibits detailed working, (utilizing Mathematica), but the end result is:

$$
\begin{equation*}
\left\langle f\left(l, m, n, s_{1}, s_{2}, s_{3}\right)\right\rangle=\frac{b^{2}}{2 \sqrt{\pi}} e^{-s_{3}} \frac{\Gamma(1+l+m) \Gamma\left(\frac{1}{2}+n\right)}{\Gamma\left(\frac{3}{2}+l+m+n\right)} \sum_{k=0}^{\infty}\left(\frac{(1+l+m)_{k}}{k!\left(\frac{3}{2}+l+m+n\right)_{k}} \sum_{q=0}^{k}\left(\binom{k}{q}\left(s_{3}-s_{1}\right)^{k-q}\left(s_{1}-s_{2}\right)^{q} \frac{\Gamma\left(\frac{1}{2}+m+q\right)}{\Gamma(1+m+q)}{ }_{2} F_{1}\left(-2 l ; \frac{1}{2}+m+q ; 1+2 m+2 q ; 2\right)\right)\right) \tag{5}
\end{equation*}
$$

where ${ }_{1} \tilde{F}_{1}(a ; b ; z)={ }_{1} F_{1}(a ; b ; z) / \Gamma(b)$ is the regularized confluent hypergeometric function, ${ }_{1} F_{1}(a ; b ; z)=\sum_{k=0}^{\infty}\left((a)_{k} z^{k} /(b)_{k} k!\right)$ is the Kummer hypergeometric function, and
$(a)_{n}=a(a+1)(a+2) \cdots(a+(n-1))$ is the Pochhammer function. We now assume a general tensor such that $\left(s_{1}, s_{2}, s_{3}\right)=\left(2 b \lambda_{1}, 2 b \lambda_{2}, 2 b \lambda_{3}\right)=(0.1,0.01,0.001)$ and evaluate the leading three diagonal elements of $\mathrm{M}^{\prime},\left(\mathrm{M}_{1,1} \mathbf{M}_{2,2}\right.$ and $\left.\mathrm{M}_{3,3}\right)$ using Eq. [5]. The results are $f(2,0,0,0.1,0.01,0.001)=0.195056 \ldots ; f(0,2,0,0.1,0.01,0.001)=0.195754 \ldots$ and $f(0,0,2,0.1,0.01,0.001)=0.190843 \ldots$. This indicates that the leading terms are not equal and therefore the prescription given in Eq. [2] is violated.

CONCLUSION: In the limit of an infinite number of sampling vectors, the precision matrix is rotationally invariant only for the trivial case of isotropic tensors - a result previously outlined elsewhere ${ }^{5}$. Even in this infinite limit, however, for a given anisotropic tensor, the leading 3 diagonal terms of M' are unequal and hence the condition laid out in Eq. [2] is violated. As discussed earlier, just one example of non-conformance to Eq. [2] is sufficient to conclude that, despite claims by some groups to the contrary, it is indeed NOT possible to design a statistically rotationally invariant sampling scheme.

REFERENCES: 1. Basser et al. TMI 2003; 22 :785-; 2. Jones MRM 2004; 51:807-; 3. Skare et al. J Magn Reson 2000; 147: 340- ; 4. Batchelor et al. MRM 2003; 49:1143-; 5. Jones Proc ISMRM 2003, p. 2118. 6. Koay et al. J Magn Reson 2006; 182:115-; 7. Hext Biometrika 1963; 50:353-;

