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Introduction 
Deconvolution of bolus tracking data permits cerebral perfusion parameters to be estimated from the calculated tissue residue function Ř(t) (1). When a global arterial 
input function (AIF) is used in the deconvolution, the shape of Ř(t) reflects not only the tissue perfusion but also the distortion of the flow in the feeding vessels distal to 
where the AIF is measured. Delay and dispersion of the bolus due to abnormal vasculature distort R(t) introducing an underestimation of cerebral blood flow (CBF), an 
overestimation of mean transit time (MTT), and errors in flow heterogeneity (FH (2)). Since these perfusion parameters are commonly used to predict regions of tissue 
at risk of infarction, differentiating the effects of distorted flow from a true perfusion abnormality is imperative for an accurate diagnosis. An important first step 
towards assessing the reliability of the perfusion parameters is to accurately characterise Ř(t). Because the deconvolution problem is ill-posed, regularisation is needed 
for a stable solution. Maximum-likelihood expectation-maximisation (ML-EM) based deconvolution is able to recover all the constituent frequency components of Ř(t), 
so can potentially reconstruct the correct shape (3,4). In this work, an oscillation index (OI) is used to regularise the ML-EM solution. Wavelet thresholding is 
subsequently employed to selectively remove the high frequency components thought to originate from noise (5,6).  Combining the two techniques could potentially 
recover a Ř(t) with less regularisation error and noise corruption compared with conventional deconvolution methods such as SVD (1). If the shape of Ř(t) is accurately 
characterised, a dispersion index could be calculated and used in combination with the delay and CBF estimates to provide an improved interpretation of the data. 
Methods 
The deconvolution was performed using ML-EM (3), with a maximum number of iterations, n determined by an 
oscillation index (OI), defined as the sum over the size of each oscillation in the reconstruction Ř[k] at iteration, k, 
scaled by the FWHM of Ř[k]. The OI is designed to prevent over iteration and consequent noise corruption of Ř(t), 
whilst still recovering the high frequencies defining the less dispersed  Ř(t) (4).   
The solution Ř[n], which is the first iteration for which OI>0.025, contains high frequency components, including 
those associated with amplified noise. A two level undecimated discrete wavelet transform of Ř[n] is performed using 
length four, minimum phase Daubechies' wavelet filters (5,6). The detail wavelet coefficients were thresholded to 
10% of the maximum of the approximation. The inverse wavelet transform recovers the final estimation Ř.   
The deconvolution process is performed twice using two different matrices (A1 and A2) to represent the AIF. The 
approximation used in A1, assumes that both Ř(t) and AIF(t) evolve linearly between sample points (1). This 
assumption is not appropriate if there is a discontinuity before the maximum of Ř(t) (i.e. when the flow is delayed but 
not dispersed). In these circumstances, an alternative matrix A2, which assumes Ř(t) is constant between sample 
points, allows a more accurate reconstruction (4). The most appropriate matrix is in practice selected using threshold 
criteria determined from simulations (see below).  
This methodology was tested on simulated and patient data. For the simulations, AIF was modelled as a gamma-
variate function with recirculation (1), and Ř(t) as the dispersed exponential Ř(t-tdelay)=[exp(-(t-tdelay)/β)-exp(-(t-
tdelay)/MTT)]/((β/MTT)-1),for delays tdelay and dispersions β (7). Tissue curves were simulated for a range of CBF, 
MTT, tdelay and  β. 100 different noisy tissue curves were generated at SNR=100 (S0/σS0) for each parameter 
combination, and the means and standard deviations for  each point in Ř  were evaluated. The patient data were 
acquired on a 1.5T Siemens Symphony scanner after injecting 0.15mmol/kg of Gd-DPTA using a GE-EPI sequence 
(TE/TR=47/1500ms), and denoising was performed using independent component analysis (ICA) (8). 
The dispersion characteristics of Ř were estimated using a dispersion index (DI) defined DI=FWHM(Ř)*RTM(Ř), 
where RTM is the rise-to-maximum from baseline, included to distinguish between long MTT and dispersion. The 
delay was estimated from the length of the baseline, and the CBF estimated from the maximum of Ř.  
Results 
The simulations showed that matrix A2 (most suitable for delayed and non-dispersed 
flow) could be correctly selected where appropriate over matrix A1 using the 
combination of criteria RTMA1<2 and (CBF*DI)A2<(CBF*DI)A1  and (CBF)A2<(CBF)A1 
.For tdelay,=0-4s and β= 0-6s-1 the success of the classification ranged 70-100%.   

Figure 1 shows the mean DI (+/-1 standard deviation) measured from the 100 
reconstructed Ř (simulated with CBF =60ml/100g/min, MTT=4s) for tdelay =0 and 2s 
and β=0-6s-1. Each solid line and errorbar represents the measured DI for that delay. 
The dotted line is the DI calculated from the true Ř(t) used to simulate the tissue. The 
approximately linear relationship between the simulated dispersion and the measured 
DI makes this parameter a useful for indicating the accuracy of perfusion estimates 
(greater dispersion leads to a greater distortion). Further simulations conducted with 
different flow parameters show that the slope increases as MTT increases. 
Figure 2 illustrates mean (+/-1 standard deviation) for simulations reconstructing CBF*Ř(t) with A) tdelay=0s, β=0s-1; B) tdelay=1.5s, β=0s-1; C) tdelay=2s, β=4s-1. The dotted 
lines show the true Ř(t). A clear distinction can be made between the delayed and dispersed Ř, enabling a good estimation of delay and dispersion. 
Figure 3 illustrates the results found for in vivo data from a patient with left middle cerebral artery (MCA) stenosis. The maps were created using an AIF measured in 
the contra-lateral MCA. A) CBF, B) tdelay, C) DI.  Regions corresponding to low CBF estimates are found to have larger delay and dispersion, with the consequence that 
the CBF map would exaggerate any perfusion deficit in these regions. 
Discussion 
An accurate characterisation of Ř(t) is important for assessing tissue viability. In patients with vascular abnormalities, interpreting the CBF maps independently of the 
shape of Ř(t) may lead to a misclassification of ischaemic tissue. Combining oscillation constrained ML-EM and wavelet analysis is shown to be an effective way to 
simultaneously minimise noise whilst preventing distortion of Ř due to over regularisation, enabling delay and dispersion to be estimated which may assist the 
interpretation of CBF.  
The combined ML-EM-wavelet approach to calculating Ř(t) utilises the same concept as the point-wise stopping criteria in modified ML-EM (mML-EM) (4), designed 
to selectively recover the high frequency components associated with Ř(t) itself whilst suppressing those associated with noise. Whereas the criteria used in mML-EM 
must be adjusted for various scanning parameters, the wavelet thresholding approach provides a universal criterion for all data.  
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