Structural-Acoustic Analysis, Identification and Control of a 4T MRI Scanner

M. Li', T. C. Lim', C. K. Holland?, S. E. Boyce®, J-H. Lee**

"Mechanical, Industrial & Nuclear Engineering, University of Cincinnati, Cincinnati, OH, United States, “Biomedical Engineering, University of Cincinnati, Cincinnati,
OH, United States, *Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, United States, 4Center for Imaging Research, University of
Cincinnati, Cincinnati, OH, United States

Introduction

High-field, high-speed imaging techniques, such as echo planer imaging (EPI) used at 3T or 4T, emit acoustic noise typically in the range of 120-
130 dB [1]. This noise is seriously annoying fro both patients and healthcare workers. It is also a potential health issue, particularly in terms of its
effect on hearing. In this study, we conducted a series of experiments to identify the major acoustic noise sources and their relative contributions. The
approach involved quantifying a set of impulse response functions [2-3] that can be applied to synthesize the actual operating response for any
gradient excitation pulses. The results are intended to guide the development of a suitable active noise control (ANC) system. In addition, a
preliminary simulation study is also presented to demonstrate the achievable noise reduction at the principal harmonic.
Method and Results

Acoustic noise measurement was conducted with a 4T Varian UnityINOV A whole-body MRI scanner operated using an EPI pulse sequence. The
sound pressure data was acquired using a set of special-purpose, omni-directional non-ferrous microphones placed at positions equivalent to a
patient’s ear and mouth guided by a humanoid dummy. The sound pressure signals and gradient excitation pulse waveforms were acquired
simultaneously with a multi-channel digital data recorder and processed using a high-speed computer. Two types of gradient excitations were
applied: (a) actual operating pulses (i.e. EPI scan) and (b) artificial impulse excitations (i.e. a single short-duration triangular pulse).

The measurements were also analyzed in detail to determine the sources of the major response peaks. Figure 1 illustrates the origins of the
harmonics (1, 2...), non-harmonics (0) and broadband responses for the X, Y and
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According to these findings, it is conceivable that a suitable active noise I 60
control system can be developed for this MRI system. Our target is to suppress % 40
the MRI sound field in the vicinity of the ear and mouth. In our preliminary o 2 a 6 8 10 12
simulation (shown in Fig. 3), we estimate an achievable target of about 20dB 120 — : : . :
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revealed that the frequency-encoding gradient, which produces both odd harmonic 80 a5 |

and non-harmonic responses, is the most dominant amongst the three gradients’
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suppressing response peaks by about 20dB for the fundamental frequency alone. Fig. 1 - Acoustic noise source identification:
Further studies are in-progress to develop a feasible active control system. (a) X-gradient; (b) Y-gradient; (c) Z-gradient.
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Fig. 3 - Active noise control simulation targeting the Fig. 2 - Measured and predicted acoustic noise
peak response of the fundamental frequency. response related to the Y-gradient input.
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