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Introduction: White matter tractography is a noninvasive method for estimating white matter connectivity pathways using diffusion tensor imaging (DTI) data.
Experimental noise may induce errors in the measured fiber directions and reduce the accuracy and precision of the estimated white matter trajectories. Several
probabilistic tractography methods have been previously proposed to account for the uncertainty in the local fiber direction estimation. Probabilistic methods can be
largely categorized in two groups, the parametric methods that assume certain models of dispersion in the fiber direction (1-4), and the nonparametric methods that
estimate the uncertainty from data itself without any model assumption (5, 6). The nonparametric methods are based on bootstrap statistical resampling methods and use
as a sampling pool a set of multiple (repeated) diffusion-weighted measurements. The advantage of bootstrap methods lies in intrinsically accounting for sources of
noise that are not easily modeled (e.g., physiologic, scanner instabilities, etc.). However, they require long acquisition times, and are computationally intensive. Both
parametric and nonparametric methods have been used to investigate white matter connectivity in the human brain (5-7). Yet, to date there has been no direct
comparison of the parametric and nonparametric tractography methods. The goal of this study was to compare the performances of the parametric random vector
perturbation (RAVE) algorithm (4) against a nonparametric bootstrap tractography (BOOT-TRAC) algorithm (5).

Methods: DTI images were acquired for two volunteers using a diffusion-weighted spin-echo EPI sequence with cardiac gating on a 3T Signa MRI scanner. Diffusion-
weighted images were obtained for 12 uniformly distributed diffusion-encoding directions. A constant diffusion weighting of 1000 s/mm?” was used for all diffusion-
weighted images. Other imaging parameters included an image acquisition matrix of 120 x 120 and a field of view of 240 x 240 mm’. The reconstructed 2D images
were zero-filled interpolated to a 256 x 256 image matrix resulting in a voxel size of 0.9375x0.9375x3 mm?®. The acquisition time for a single DTI set for a brain
volume was roughly 2.6-3.25 min. The acquisition was repeated 8 times for subsequent bootstrap analyses, resulting in a total imaging time of approximately 30 min.
The diffusion-weighted images were first corrected for bulk motion and eddy current
distortions using a two-dimensional affine registration algorithm in AIR (8). EPI image
distortions from BO inhomogeneities were then corrected using a field map estimated
from two gradient echo images using the fugue software program in the FSL software
tools library. Each of the eight diffusion-weighted image volumes was corrected using
the same field map. Misregistration between image volumes was assessed by taking
the difference between image volumes and was deemed negligible. BOOT-TRAC:
Bootstrap methods use repeated random sampling with replacement from a set of
measurements to generate estimates of the underlying statistical distributions of the (Y ! ™4 o )4 "
measurements. A bootstrap trajectory is generated from bootstrap estimates of the - 2RAVE=4d BOOT-TRAC -'RAVE «d BOOT-TRA€
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choosing subsets of the 8 measurements set and averaging them (with the subset size, Figure 1 RAVE and BOOT-TRAC distributions for a seed point situated
N, varying from 1 to 8). The process is repeated until a distribution of 1000 n the body of corpus call'osqm, .for N“":? (left image) and N,=8 (right
trajectories is obtained for each seed point. The bootstrap algorithm used here is image). Top row: flber. dlstrlbuthns projected opto coronal _FA maps.
described in detail in (5). RAVE Tractography: RAVE algorithm generates a Bottom row: Fiber density shown in the same axial cross-section for all
distribution of possible propagation directions at each step along the trajectory by cases.
perturbing the local tensor major eigenvector (4). Initially, the tensor in the measurement frame, D, is diagonalized into the tensor frame, Dy. A perturbed direction e, is
obtained by randomly generating normally distributed y and z offsets with mean zero and standard deviation proportional to ratio of the ellipsoid length along the
corresponding axes and the length along the x axis: y=ar (N(0, A/A;)"?) and z=a- (N(O, As/A;)"?), where o is a proportionality factor. The perturbed vector is rotated
back to the measurement frame and used as local propagation direction by the fiber-tracking algorithm. A trajectory is obtained by starting at the seed point and
propagating along “perturbed” directions at each step. As in bootstrap tractography, the process is repeated to obtain a distribution of trajectories. “Reference”
trajectories are obtained for each seed point from the diffusion data set given by the average of all measurements.

Results: The BOOT-TRAC and RAVE algorithms were compared for several seed
points. We investigated the behavior for data sets of different SNR (obtained by
averaging a different number of measurements, e.g., N,,=1-8). Comparative images of
the fiber distributions obtained using the two algorithms are presented in Figures 1
and 2 for representative cases and for two noise levels (corresponding to 1 and 8
averages, respectively). Tract density at each voxel was calculated and was given by
the number of trajectories intersecting the voxel divided by the total number of
trajectories. The tract density is shown in Figures 1 and 2 (bottom rows) using a
modified hot temperature color map (with high tract density indicated by white and BOOT-TRAC
low density by dark red). A RAVE “n” parameter with a value of 2 has been found to e\
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Discussion: The RAVE algorithm appears to generate fiber distributions similar to
the BOOT-TRAC algorithm for trajectories situated in homogeneous white matter
regions. Distributions might differ for highly diverging branches, with this situation
more likely to occur at low SNRs. In diverging cases, the RAVE algorithm appears to
indicate the same “branching points” as BOOT-TRAC. These preliminary results

Figure 2 RAVE and BOOT-TRAC distributions for a seed point situated
indicate that RAVE might be a viable substitute for the BOOT-TRAC tractography in i1 the splenium of corpus callosum, for N,,=1 (left image) and N,=8 (right

image). Top row: fiber distributions projected on axial FA maps. Bottom

cases when multiple measurements of the diffusion-weighted images are not available _ ' * ) a
row: Fiber density shown in the same axial cross-section for all cases.

or are difficult to obtain (e.g., for clinical applications where imaging time is a
concern).
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