

Describing Magnetization Transfer Parameters in White Matter Using a Four-Pool Model

T. A. Bjarnason¹, A. L. MacKay^{2,3}

¹Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada, ²Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada,

³Radiology, University of British Columbia, Vancouver, BC, Canada

Introduction: Recently, the NMR behaviour of bovine

white matter was characterized using a four-pool model [1]. Other investigators [2], [3] have used a two-pool model to characterize magnetization transfer (MT) in white matter. By comparing the two-pool model with the four-pool model, one can derive two-pool MT parameters from the four-pool model.

Methods: Schematic representations of the four- and two-pool models are shown in Fig. 1. The restricted proton pools are on top represented by **m**, **nm**, and **r** standing for myelin, non-myelin, and restricted, respectively. The mobile proton pools are on the bottom represented by **mw**, **ie**, and **f** standing for myelin water, intra/extracellular water, and free water.

The Bloch equations of the four-pool model are shown in Eqs. 1 [1], while the two-pool model Bloch equations [2] can be written as shown in Eqs. 2. In these equations the M_s and $M(\infty)$ s denote the time

dependent and equilibrium magnetizations of the two proton pools, k_s denote the rate constants between the pools with directionality as indicated in Fig. 1, and T_1 s are the longitudinal relaxation times of the compartments. From Fig. 1 and Eqs. 1 and 2 one can derive $M_f(\infty)=M_{mw}(\infty)+M_{ie}(\infty)$, $M_r(\infty)=M_m(\infty)+M_{nm}(\infty)$, $k_{fr}=(k_{21}M_{mw}+k_{34}M_{ie})/(M_{mw}+M_{ie})$, and $k_{rf}=(k_{12}M_m+k_{43}M_{nm})/(M_m+M_{nm})$. Defining Henkelman *et al.*'s $R_A=1/T_1^f=MWF/T_1^{mw}+(1-MWF)/T_1^{ie}$, where MWF stands for the myelin water fraction, one of Henkelman *et al.*'s parameters can be derived as $RM_0^B/R_A=k_{fr}/R_A$. Henkelman *et al.*'s $R=[M_f(\infty)+M_r(\infty)]/T_{cr}^{fr}M_r(\infty)$, where $T_{cr}^{fr}=k_{fr}^{-1}+k_{rf}^{-1}$ [1]. In the work of Sled & Pike [3] the fraction of protons that reside in the non-aqueous pool can be defined as $F=[1-M_f(\infty)]/M_f(\infty)$.

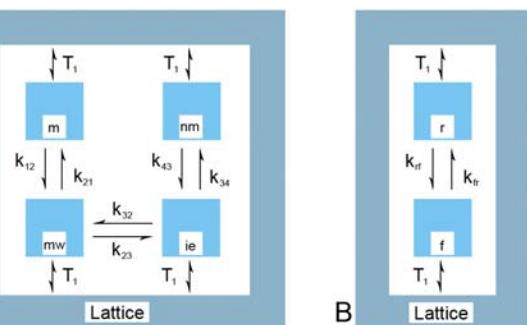


Fig. 1: Schematics of white matter models. The four-pool model is shown in A; the two-pool model in B.

dependent and equilibrium magnetizations of the two proton pools, k_s denote the rate constants between the pools with directionality as indicated in Fig. 1, and T_1 s are the longitudinal relaxation times of the compartments. From Fig. 1 and Eqs. 1 and 2 one can derive $M_f(\infty)=M_{mw}(\infty)+M_{ie}(\infty)$, $M_r(\infty)=M_m(\infty)+M_{nm}(\infty)$, $k_{fr}=(k_{21}M_{mw}+k_{34}M_{ie})/(M_{mw}+M_{ie})$, and $k_{rf}=(k_{12}M_m+k_{43}M_{nm})/(M_m+M_{nm})$. Defining Henkelman *et al.*'s $R_A=1/T_1^f=MWF/T_1^{mw}+(1-MWF)/T_1^{ie}$, where MWF stands for the myelin water fraction, one of Henkelman *et al.*'s parameters can be derived as $RM_0^B/R_A=k_{fr}/R_A$. Henkelman *et al.*'s $R=[M_f(\infty)+M_r(\infty)]/T_{cr}^{fr}M_r(\infty)$, where $T_{cr}^{fr}=k_{fr}^{-1}+k_{rf}^{-1}$ [1]. In the work of Sled & Pike [3] the fraction of protons that reside in the non-aqueous pool can be defined as $F=[1-M_f(\infty)]/M_f(\infty)$.

$$\frac{d}{dt}M_m = -k_{12}M_m - \frac{M_m - M_m(\infty)}{T_1^m} + k_{21}M_{mw}; \quad \frac{d}{dt}M_{mw} = -k_{21}M_{mw} - \frac{M_{mw} - M_{mw}(\infty)}{T_1^{mw}} - k_{23}M_{mw} + k_{12}M_m + k_{32}M_{ie} \quad (1)$$

$$\frac{d}{dt}M_{ie} = -k_{32}M_{ie} - \frac{M_{ie} - M_{ie}(\infty)}{T_1^{ie}} - k_{34}M_{ie} + k_{23}M_{mw} + k_{43}M_{nm}; \quad \frac{d}{dt}M_{nm} = -k_{43}M_{nm} - \frac{M_{nm} - M_{nm}(\infty)}{T_1^{nm}} + k_{34}M_{ie} \quad (1)$$

$$\frac{d}{dt}M_f = -k_{fr}M_f - \frac{M_f - M_f(\infty)}{T_1^f} + k_{rf}M_r; \quad \frac{d}{dt}M_r = -k_{rf}M_r - \frac{M_r - M_r(\infty)}{T_1^r} + k_{fr}M_f \quad (2)$$

Results: In Table 1, two-pool MT parameters derived from the four pool model [1] are compared with the results of Morrison & Henkelman's bovine MT study carried out at 20-22 °C [4] and with Sled & Pike's human *in vivo* white matter MT results [3]. The fundamental rate constant, R , and a dimensionless parameter, k_f/R_A , agree within stated error using the two models of white matter. The k values agree within stated error, while the F parameter does not.

Table 1: Comparing four-pool model derived values with reported MT results.

	R (s ⁻¹)	k_{fr}/R_A	k_{fr} (s ⁻¹)	k_{rf} (s ⁻¹)	F
Values from four pools	15.8±9.3 ^a	2.8±1.6 ^a	7.3±3.9 ^b	24.1±7.0 ^b	0.230±0.029 ^b
Values from two pools	21±3 ^c	2.0±0.1 ^c	4.6±1.3, 4.3±1.0 ^d	30±13, 27±10 ^d	0.152±0.023, 0.161±0.025 ^d

^aBovine white matter at 24 °C [1]. ^bBovine white matter at 37 °C [1]. Both ^a and ^b where calculated from four-pool model results. ^cBovine white matter at 20-22 °C [4]. ^dHuman white matter *in vivo* [3].

Discussion: The bovine white matter results agree within stated error, and two of the three parameters agree within stated error when comparing bovine white matter *in vitro* at 37 °C with human *in vivo* white matter.

Conclusion: After examining the similarities between the two models of white matter we have shown that it is possible to derive MT parameters using four-pool model results. The four-pool model is more suitable for white matter because the two-pool model ignores the known existence of two water reservoirs in white matter. The parameter F characterizes all non-aqueous protons and its use as a myelin-specific marker is not appropriate. We believe that future work on modeling MT results should involve at least four pools [5].

1. Bjarnason *et al.* MRM 54:1072-81 (2005) 4. Morrison & Henkelman. MRM 33:475-82 (1995)
 2. Henkelman *et al.* MRM 29:759-66 (1993) 5. Stanisz *et al.* MRM 42:1128-36 (1999)
 3. Sled & Pike. MRM 46:923-31 (2001)

Acknowledgement: We gratefully thank the Multiple Sclerosis Society of Canada.