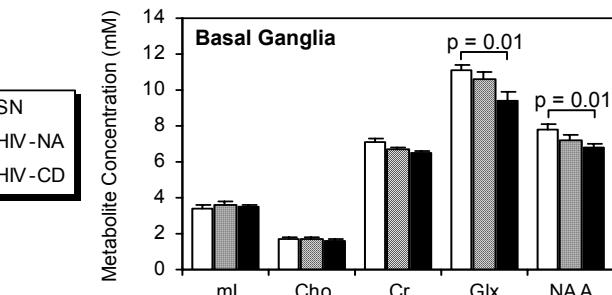
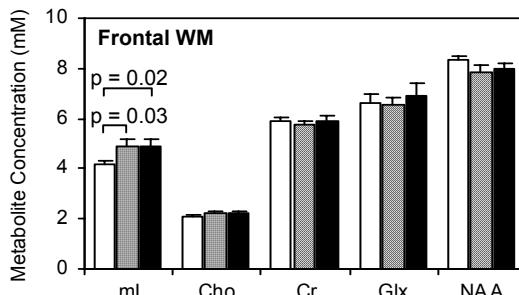
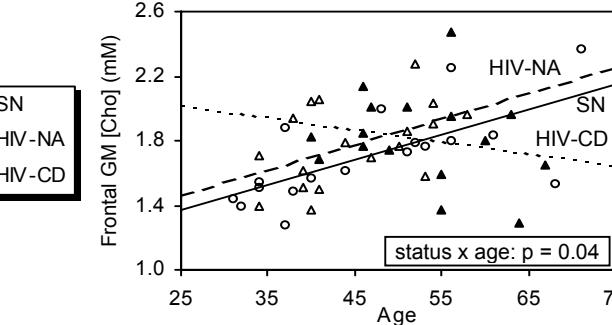
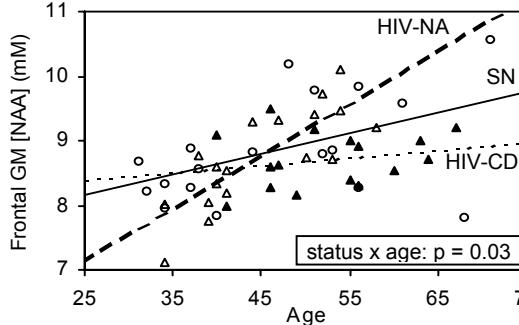


Age-Related Changes in Brain Metabolites in Antiretroviral Medication-Stable HIV Patients

K. Yue¹, L. Chang¹, D. Alicata², C. Cloak¹, K. Taketa¹, T. Ernst¹



¹Department of Medicine, University of Hawaii, Honolulu, HI, United States, ²Department of Psychiatry, University of Hawaii, Honolulu, HI, United States

INTRODUCTION: Human Immunodeficiency Virus (HIV) infection may alter the pattern of changes in brain metabolism with aging [1-3]. Due to new antiretroviral medications, many more HIV-infected people have longer or normal life expectancy. Therefore, the influence of both the HIV status and the medications on their aging process has become a concern. The aim of this study is to investigate the interaction between HIV status and aging on brain metabolites in medication-stable HIV subjects using ¹H MR spectroscopy (MRS).



METHODS: Fifty-two subjects were studied: 18 seronegative controls (SN: 4F/14M, age 47 ± 12 years, education 16 ± 2 years), 18 seropositive neuroasymptomatic subjects (HIV-NA: 2F/16M, age 45 ± 7 years, education 14 ± 2 years, clinical AIDS Dementia Complex or ADC stage 0), and 16 seropositive subjects with cognitive deficits (HIV-CD: 1F/15M, age 53 ± 8 years, education 15 ± 3 years, clinical ADC stage 0.5-1.0). HIV+ subjects were on stable antiretroviral medications. Localized ¹H MRS was performed on a 3 Tesla MR scanner (Siemens MAGNETOM Trio, Siemens AG Medical Solutions, Erlangen, Germany) in four brain regions: medial frontal gray matter (GM), right frontal white matter (WM), right basal ganglia, and medial parietal GM, using a standard Point RESolved Spectroscopy (PRESS) acquisition sequence (TR/TE = 3000/30ms, 64 averages). Additional water T2 data were acquired in conjunction with LCModel analysis to obtain metabolite concentrations [4-5].

RESULTS: The two HIV groups had similar disease severity, including CD4 counts (HIV-NA: 479 ± 240 / μ L; HIV-CD: 385 ± 202 / μ L), nadir CD4 counts (HIV-NA: 152 ± 121 / μ L; HIV-CD: 140 ± 123 / μ L), log plasma viral loads (HIV-NA: $<2.2 \pm 1.1$, 13 subjects had undetectable load; HIV-CD: $<2.5 \pm 1.4$, 11 subjects undetectable), HIV Dementia Scale (HIV-NA: 15 \pm 1; HIV-CD: 13 \pm 2), Karnofsky Score (HIV-NA: mean = 97, range 80-100; HIV-CD: 88, 70-100), and duration of medication (HIV-NA: 34 \pm 26 mo.; HIV-CD: 40 \pm 32 mo.). Significant MRS findings are summarized in Fig. 1. Compared to SN, the HIV+ subjects showed increased frontal WM myo-inositol concentration ([ml], HIV-NA: +17%, $p = 0.03$; HIV-CD: +17%, $p = 0.02$). HIV-CD also showed decreased basal ganglia N-acetylaspartate concentration ([NAA], -13%, $p = 0.01$) and glutamine+glutamate concentration ([Glx], -15%, $p = 0.01$), and HIV-NA showed similar trends. There was a significant status x age interaction for the frontal GM [NAA] ($p = 0.03$) and [Cho] ($p = 0.04$); see Fig. 2. In the SN controls, increases in [Cho] with age were observed at a rate of 8-10% per decade in the frontal GM (0.15 mM/decade, $p < 0.01$), the basal ganglia (0.17 mM/decade, $p < 0.01$), and the parietal GM (0.09 mM/decade, $p < 0.02$). Similar age-related increases in [Cho] were observed in the frontal GM (0.16 mM/decade, ~9%/decade, $p < 0.05$) of HIV-NA. However, no significant change in [Cho] with age was observed in the frontal WM in any of the three groups. In the SN controls, [NAA] increased at a rate of 3-4%/decade in the frontal GM (0.32 mM/decade, $p < 0.05$) and the frontal WM (0.25 mM/decade, $p < 0.05$), and at a rate of 9%/decade in the basal ganglia (0.72 mM/decade, $p < 0.01$). In HIV-NA, the frontal GM [NAA] increased at a much higher rate (0.81 mM/decade, 9%/decade, $p < 0.0001$). No significant change in [NAA] with age was observed in the parietal GM in any group.

Fig. 1.
Change in brain metabolite concentrations (mean \pm SE) in HIV subjects.

Fig. 2.
Regression plots with significant HIV status x age interactive effect on metabolite concentrations.

DISCUSSION: A trend for age-related increases in frontal [NAA], particularly in the GM, has been observed in healthy aging [6-7]. However, the age-related increase in basal ganglia [NAA] in our HIV-NA subjects is different from a prior report [1], which may be due to the greater proportion of female control subjects in the prior study. The slower rate of age-related increase in [NAA] in the HIV-CD group suggests a greater age-related neuronal injury in the frontal cortex, as reported in patients with ADC [3]. The finding of age-related increases in GM [Cho] in both SN and HIV-NA, but not in HIV-CD, suggests a greater glial activation in GM-rich regions during healthy aging, but the HIV-CD patients may have a depressed neuroimmune response. Furthermore, the differences in the age-related changes in metabolite concentrations between these antiretroviral-treated subjects and the medication-naive HIV subjects in the prior study [1] indicate that antiretroviral medications may modulate the effects of HIV on the aging brain.

ACKNOWLEDGEMENTS: Studies were supported by NIMH (R01 MH61427) and NIDA (K24-DA16170; K02-DA16991). Authors would like to thank Tara Chahil, Laura Girton, Helenna Nakama, Darlene Ramones, Napapon Sailsasuta, Trevor Wu, and Renat Yakupov for their assistance/discussions.

REFERENCES: [1] Ernst T, Chang L. AIDS 2004;18:S61-7. [2] Chang L, Lee PL, et al. NeuroImage 2004;23:1336-47. [3] Navia BA, Rostasy K. Neurotox Res 2005;8:3-24. [4] Ernst T, Kreis R, et al. J Magn Reson 1993;B102:1-8. [5] Provencher SW. NMR Biomed 2001;14:260-4. [6] Pfefferbaum A, Adalsteinsson E, et al. Magn Reson Med 1999;41:276-84. [7] Harada M, Miyoshi H, et al. Neuroradiology 2001;43:448-52.