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Introduction 
MR-Elastography (MRE) enables additional characterization of pathologies by providing new physical parameters, for instance the complex shear 
modulus G*(ω)=Gd(ω)+Gl(ω) at a single frequency [1,2]. However, interpretation of G*(ω) in terms of elastic and viscose properties necessitates the 
knowledge about the underlying rheological model. Tissue is a material with a hierarchical organization [3] and does not follow for instance the classical 
Voigt model [4], which is often used to interpret the observed frequency dependence of the measured shear wave speed [5]. Meaningful diagnostic 
interpretation of G*(ω) thus requires studying the underlying rheological model of normal and of pathological tissue in particular. Therefore, as a first 
step, a study of the frequency behavior of G*(ω) of fresh bovine liver tissue is conducted.  

 

Methods 
3D Mono-chromatic steady-state MRE experiments of fresh bovine liver samples were performed using mechanical excitation frequencies between 40-
100 Hz. Gd(ω) and Gl(ω) are reconstructed according to [6] and the obtained maps were averaged spatially. The corresponding mean values for the 
various frequencies were fit simultaneously to various rheological models. Classical viscoelastic models (Voigt, Maxwell, Zener) are arrangements of 
finite numbers of springs and dashpots. None of those models is capable to model a power-law, i.e. G*(ω)~ωα . This can be accomplished by utilization 
of a so-called springpot which is mathematically linked to fractional derivatives. These, likewise, are a mathematical necessity if the creep function of the 
material obeys a power-law [7]. Its rheological interpretation is an infinite series of Maxwell-elements entangled in a fractional manner.   
 

Results 
Fig.1 shows the obtained values for Gd(ω) (red markers) and Gl(ω) (green markers) as well as |G*(ω)| (black markers) together with the best fit of our 
new model (according lines). The validity of the classical Voigt model is ruled out due to the fact that Gd(ω) is not constant. Moreover, both datasets rise 
according to a power-law suggesting a broad distribution of intrinsic relaxation times. Thus, all standard models (Maxwell, Zener) are also excluded 
because they do not model a power-law behavior. Both individual datasets could well be described by a power-law with Gd(ω)~Gl(ω)~ω0.75. This 
suggests the validity of the springpot model, whose rheological interpretation is sketched in Fig.2a,b). The model, however, links the ratio of both moduli 
to the power-law exponent α, i.e. Gl(ω)/Gd(ω) = tan(α*π/2) = const. This property resembles so-called structural damping, i.e. elasticity and viscosity 
originate from the same physical cause. Our data also show a constant ratio. Still, its ratio is not linked to α=0.75 but rather approximated by Gl(ω)/Gd(ω) 
= tan(0.15*π/2). Both observations, power-law behavior ~ωα and constant ratio Gl(ω)/Gd(ω) = tan(β*π/2), can be explained by a new rheological model 
which is shown in Fig.2c). Here, a fractal ladder is constructed from springpots as basic elements (unlike the springpot itself, who is a fractal ladder 
constructed from classical springs and dashpots). This model reflects the properties of two fractal structures, one described by a power-law with 
exponent α and a second with exponent β. Measurements in phantoms did not necessitate a second network for explanation of the dispersion of G*(ω).   
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Fig.1:  Dynamic modulus Gd (red) and 
loss modulus Gl (green) as a function 
of frequency. Black symbols = |G*(ω)| . 

Fig.2: a) Classical Maxwell element consisting of spring and dashpot. b) Infinite fractal 
ladder constructed from Maxwell elements. This ladder describes a springpot. c) New 
rheological model which is a fractal ladder of springpots.  

 

Discussion & Conclusions 
A proper understanding of the underlying rheology of tissue is required for a reasonable interpretation of clinical data from MRE. This analysis 
demonstrates the failure of the classical Voigt model to describe the frequency behavior of the dynamic modulus for ex-vivo bovine liver tissue in the 
frequency range from 40-100 Hz. The observed scaling behavior requires utilization of fractional derivatives which resemble fractal structures. Our data 
require the extension of the standard springpot model to two fractal networks woven into each other. The inner network yields a power of α~0.75, which 
is the value found for the cytoplasm (liquid-like). The outer network yields a power of β~0.15, which has been found for the cytoskeleton (solid-like) [8]. 
Thus, the explanation of the frequency behavior necessitates utilization of two very different components. Currently, in-vivo rat experiments are 
conducted to proof which tissue components represent the found power-law exponents. If truly linked to the cytoplasm and the cytoskeleton, MRE might 
have the capability to reveal micro-rheological properties on the clinical imaging scale due to the intrinsic characteristics of tissue to exhibit scaling.  
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