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Introduction 
    An analytical theory of FID signal formation in the presence of tissue specific magnetic susceptibility effects was developed previously [1]. The theory 
predicts signal dependence on the susceptibility difference between tissue and magnetized objects, and also on the objects’ volume fraction. Theory 
assumes a sufficient small volume fraction so that a random and independent distribution of the objects can be applied. For spherical objects of radius R, 
the position overlapping occurs if the distance between two objects’ centers becomes smaller than 2R. Under the volume fraction of 6%, the probability 
of overlapping of two spheres is 48% whereas the probability of overlapping three or more sphere is less than 1%. This indicates that the overlapping 
effects should be taken into consideration to adequately describe the signal behavior even for small volume fractions. One such approach (Model of 
mutually avoiding cylinders) was proposed previously [2]. Herein we developed an approach that combines mean field approximation with the hard-
sphere model [3, 4] to estimate the correction on NMR signal. Under such approximation, the distribution function of a given sphere is formulated under 
the influence of the rest of objects. 

Theory  

    Let us consider N spherical objects of radius r0 and volume v0 embedded in the given medium with the volume fraction 0 /N v Vζ = . The FID signal 

after an RF excitation pulse, normalized to the system volume V, can be represented as 
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where ( )n nb −r r  is the z component of the inhomogeneous magnetic field induced by the nth object (with the center at 
nr ) at a point r ; ( ).P  is the 

probability to find a spin at a point r  and the centers of objects at r1, r2,… rN. Under the hard-sphere model, the distribution functions of the objects are 
not independent from each other. However, in the mean field approximation, each object can still be approximately treated independently with a modified 
distribution function. This distribution function can be formulated in an imaginary process in which the specific object is introduced from the outside of 
system, which is pre-packed with (N -1) hard-sphere objects. 

    Given a medium spin at r and the nth object located at rn, then for each of the rest of (N -1) objects, its distance to r should be larger than r0 and its 
distance to rn should be larger than 2r0. The “forbidden” region is called as an exclusive region. The volume of the exclusive region (denoted hereafter 

λ(Rn)⋅v0) depends on 
nnR −= r r : for example, λ = 9 for 

0
3nR r> , λ = 8 for 0nR r< . Assuming the rest of (N–1) objects are distributed independently 

and uniformly, the probability of finding that none of the (N-1) object resides in this exclusive area is ( ) ( )1
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N
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existence of any of (N-1) object inside this exclusive region would automatically forbid the allocation of nth object at the point rn, the distribution function 
for the nth object is not uniform (outside of the exclusive region created by the spin at r) anymore. The tedious calculations give the following result: the 

distribution function for the nth object is 0 if 0nR r< ; ( )( )[ ]0exp 9 nR rλ ζ Ω− ⋅  if 0 03nRr r< < ;  and 1 Ω  if 03nR r> ; where Ω  is the normalization 

factor. It means that the nth object has a higher probability to stay closer to the given spin at r since the exclusive region becomes smaller. Then the FID 
signal in Eq. (1) becomes 
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where ( ).sf is the characteristic function for spherical object described in [1]. In the short time regime, when 1s tδω ⋅ << ,  
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In the long time regime, when 1s tδω ⋅ >> ,  
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Discussion 
Under the solid-sphere model, the distribution function of a magnetized object around a fixed spin is not uniform due to the position dependency of the 

exclusive region. As a result, in the hard-sphere model a spin experiences a higher susceptibility induced magnetic field inhomogeneities than in the 
model permitting object overlapping. Higher mesoscopic field inhomogeneities lead to more rapid decay of the FID signal.  

   In the short-time regime, Eq.(3), the correction term in the signal decay rate is quadratic as in [1] with modified coefficient. In the long time regime, Eq. 

(4), the correction term contributes an extra time-independent constant term. Combined with ( ).sf , the modified function will have a constant term of 

( 7 1ζ⋅ − ) instead of -1. As the volume fraction can be determined by extrapolating the linear time dependence of lnS at 1 / st δω>>  to t = 0 [5], the 

correction term 7ζ  should be taken into account for correct measurements. For example, in the case of a real volume fraction of 6%, its estimated value 
without the correction term would be only 3.12%. Even for the case of a small volume fraction of 3%, it will be underestimated by 20% if the correction 
term is ignored.  
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