

# Rapid High-Resolution $T_1$ Mapping by Variable Flip Angles: Accurate and Precise Measurements in the Presence of RF Field Inhomogeneity

H-L. M. Cheng<sup>1,2</sup>, G. A. Wright<sup>1,3</sup>

<sup>1</sup>The University of Toronto, Toronto, Ontario, Canada, <sup>2</sup>The Hospital for Sick Children, Toronto, Ontario, Canada, <sup>3</sup>Sunnybrook & Women's College Health Sciences Centre, Toronto, Ontario, Canada

## INTRODUCTION

Rapid 3D mapping of  $T_1$  relaxation times is valuable in many clinical applications, including dynamic contrast-enhanced MRI of cancer, perfusion studies, and diagnosis of neurological disorders. Recently, the variable flip angle (VFA) spoiled gradient recalled echo (SPGR) approach was shown to offer a significant reduction in imaging time over conventional IR and SR techniques<sup>1</sup>. However, VFA is known to be sensitive to imperfect  $B_1$  fields, which is ignored in most studies but can result in significant systematic errors in  $T_1$  estimates. We develop theoretically the impact of  $B_1$  variation and consider the influence of noise bias and choice of flip angles. Simulation, phantom, and in vivo human brain results validate improved accuracy of the proposed technique. Together, a set of methods is presented for accurate, precise, and rapid 3D  $T_1$ -mapping across a large  $T_1$  range.

## THEORY

The SPGR steady-state signal amplitude  $S_i$  acquired at flip angle  $\alpha_i$  is a function of  $T_1$ ,  $TR$ , and equilibrium magnetization  $M_0$ . The relaxation time  $T_1$  can be estimated by acquiring signal at  $N$  different flip angles<sup>2</sup>. First-order error propagation shows that small errors in flip angle ( $d\alpha$ ) due to  $B_1$  variation result in the following error in  $T_1$ <sup>3</sup>:

$$dT_1 = \frac{-T_1^2 \exp(TR/T_1)}{TR \cdot N(X^2 - \bar{X}^2)} \sum_{i=1}^N \frac{d\alpha_i}{\tan \alpha_i} \left[ Y_i (X_i - \bar{X}) + X_i (1 + \tan^2 \alpha_i) (Y_i - \bar{Y} - 2 \exp(-TR/T_1) (X_i - \bar{X})) \right] [1]$$

where  $X_i = S_i / \tan \alpha_i$ ,  $Y_i = S_i / \sin \alpha_i$ , and  $\bar{X}, \bar{Y}$  are mean values. Eq.[1] states that the relative error in  $T_1$  depends only on and is equal to twice the relative error in flip angle.

## METHODS

$T_1$  estimation was simulated for  $T_1=50-3000$  ms, beginning with signal generation for  $N$  angles  $\alpha_i$ ,  $TR=5$  ms,  $M_0=1000$ , and zero-mean Gaussian complex noise ( $\sigma=M_0/\text{SNR}$ ). Comparable imaging time was maintained by averaging multiple acquisitions ( $NEX$ ) for sets with fewer angles.  $T_1$  was estimated through weighted least-squares regression from 10,000 independent trials to obtain a mean ( $\bar{T}_1$ ) and standard deviation ( $\sigma_{T_1}$ ). Noise bias was studied by varying  $\text{SNR}=150-1000$ .  $T_1$  error due to angle (i.e.  $B_1$ ) offsets was studied by varying true angles between 50-130% of nominal. Performance was assessed by the efficiency, or  $T_1$ -to-noise per unit imaging time:  $\Gamma = (\bar{T}_1 / \sigma_{T_1}) / \sqrt{TR \cdot NEX \cdot N}$ .

Phantom experiments were performed on 8 solutions ( $T_1=50-3000$  ms) at 1.5-T (Signa EXCITE TwinSpeed, GE) using a 3D fast SPGR sequence ( $TR/TE=4.4/1.1$  ms).

Signal averages matched simulations: 6  $NEX$  for 2 angles, 4  $NEX$  for 3 angles, and so on. In vivo brain scans were acquired in two volunteers at 3.0-T (Signa EXCITE Eclipse, GE) with the following parameters ( $TR/TE=6.1/1.5$  ms,  $FOV=24$  cm,  $SL=5$  mm, matrix=256×256×28, 1  $NEX$ ). Transmit field  $B_1$  maps were acquired in all MRI experiments using SE-EPI<sup>4</sup> (8 shots,  $TR=4000$  ms, matrix=128×128,  $SL=4$  mm, 60/120° and 120/240°).  $B_0$  offsets in SE-EPI were determined off-line from calibration scans against SE measurements on a phantom.

## RESULTS

Simulations confirmed significant  $T_1$  error due to inaccurate flip angles (i.e.  $B_1$  error), with the relative  $T_1$  error equal to twice the relative angle error (Eq.[1]) when true angles were within 15% of nominal. The influence of flip angle selection is shown in Figure 1. In contrast to twin angles, which maximized efficiency  $\Gamma$  over a narrow  $T_1$  range, multiple angles maintained consistently high  $\Gamma$ . The smallest set was achieved with 3 angles tuned to the minimum and maximum  $T_1$  over the desired range (Fig.1a). Noise bias, apparent with larger angle sets, was minimal with 3 angles (Fig.1b).

Phantom results also validated our analytic expression for correcting  $B_1$ -induced error and confirmed our angle selection for optimal accuracy and precision. Accurate  $T_1$  measurements in a single phantom and across a range of  $T_1$  were obtained after  $B_1$  correction (Fig.2). Three angles provided the highest and most uniform efficiency profile and the least sensitivity to noise bias (data not shown).

Human brain  $T_1$ -maps were more uniform within and between slices after  $B_1$  correction (Fig.3). Total imaging for both  $T_1$  and  $B_1$  maps < 4 min.

## CONCLUSIONS

A method is presented for accurate and rapid 3D VFA  $T_1$ -mapping across a wide range of  $T_1$ . Significant error can result from  $B_1$  imperfections and noise bias. We successfully correct for these errors through a parameter-independent calibration curve (Eq.[1]) together with rapid  $B_1$ -mapping, and maintaining SNR above ~350. The optimal choice of flip angles is a set of three angles to ensure minimal sensitivity to noise bias and the best use of scan time for accurate and precise measurements across a large  $T_1$  range.

## REFERENCES

- (1) Deoni SC, et al. MRM 2003; 49:515.
- (2) Wang HZ, et al. MRM 1987; 5:399.
- (3) Cheng HL, et al. MRM 2005 (in press).
- (4) Wang J, et al. MRM 2005; 53:666.

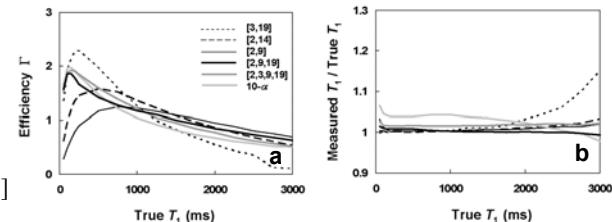



Fig.1. Simulated  $T_1$  estimation for different flip angle sets: (a) efficiency and (b) accuracy. Multiple angles offer more uniform efficiency but increased sensitivity to noise-bias.

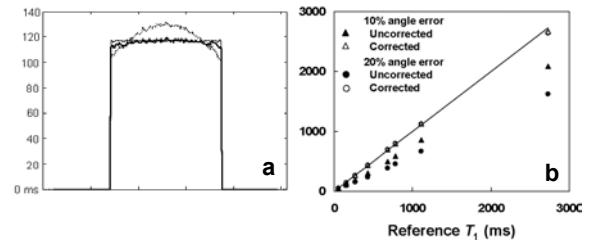



Fig.2. (a) Cross-section through  $T_1$  map of single phantom before (dotted) and after (solid)  $B_1$  correction – reference  $T_1$  (thick). (b) Phantom  $T_1$  measurements across the range 50-3000 ms.

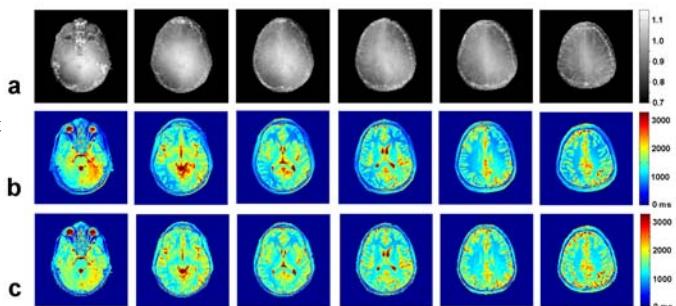



Fig.3. 3D  $T_1$ -mapping of human brain at 3.0-T. (a)  $B_1$  field maps. (b) Uncorrected and (c) corrected  $T_1$  maps acquired with 3 flip angles. Imaging time < 4 min.