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Introduction. Nyquist ghosting occurs in EPI due to misalignment between odd and even echoes. For this reason, clinical EPI scans are 
commonly performed with an additional reference scan from which phase information can be used to correct ghosting errors. For multi-
shot, multi-coil and multi-slice acquisitions, this additional scan can rival imaging time. Alternatives to reference scans are post-processing 
methods that require no additional information. One such method (1) minimizes the intensity in a ROI selected in the ghost area by 
iteratively refining phase parameters, however, this method requires user interaction. Another elegant method (2) uses the total image 
entropy as a cost function for iterative optimization and makes no assumptions about the shape or size of the object being imaged. 
However, the computation time to correct a 64-slice 128×128 4-shot data set has been reported to be 2.5 min. A clinically viable 
replacement for the reference scan may never fail, regardless of acquisition parameters chosen, anatomy of interest and how well the 
system is calibrated. Here we present a robust iterative entropy minimization implementation for ghost removal that we now use 
routinely as a replacement for reference scanning in clinical single- and multi-shot, GRAPPA-accelerated DWI and PWI EPI exams. 
Materials and Methods. Minimizing the entropy, E = -Σ B/log(B); Bij = Iij/Σ Iij², of a magnitude image has the effect of confining 
signal to as few pixels as possible. An image with some degree of ghosting (Fig. 1b) has, therefore, higher entropy than one without 
ghosting. Minimizing E by varying the constant and linear phase terms, Φ = [φcon φlin], 
can correct the differences between the odd and even echoes, minimizing the 
ghosting. Our algorithm proceeds as follows: Perform an initial 1D FT-1 to x-ky 
space. Start the iterative search at Φ0 = [φcon,0 φlin,0]., and perform the following iterative 
loop: (a) apply phase map (given by Φ) on odd and even echoes, (b) perform a 1D 
FT-1 in the ky direction, and (c) calculate the entropy E of the magnitude image I. As 
the E is π-periodic w.r.t. φcon (see Fig. 2) we are using a semi-bounded search 
algorithm, in this case Gauss-Newton. The algorithm operates prior to regridding due 
to ramp sampling. This was implemented in Matlab on a 3 GHz Linux pc. 
ROBUSTNESS: In Fig. 2, E(I,Φ) is shown for 1 to 4 shot EPI brain data (Fig. 1b is a 
4-shot case). Only if the ghosting is small, one will start searching in the quadratic 
region close to the global solution (black arrows), the width of which corresponds 
roughly to ½ pixel shift, or about 1 µs time delay between odd/even echoes. From 
our clinical experience, this is seldom the case; even though ghosting levels of 8 pixels as in Fig. 1 are 
rarely encountered. With the topology shown in Fig. 2, derivative based search algorithms like Gauss-
Newton are not guaranteed to reach the global minimum. To assure that minimization starts within the 
narrow quadratic region near the solution, we have chosen to calculate E(I,Φ) on a grid prior to iteration. 
A suitable grid size was found to be φcon: -1.6 to 1.6 in 5 steps, and φlin = -10 to 10 in 21 steps 
(corresponding to extremes of ±2×10 pixels shift or 40 µs between odd/even echoes). Φ0 = [φcon,0 φlin,0] was 
chosen for the smallest E on the grid. SPEED: From our experience, Φ does not vary significantly 
between coils or slices; hence for a fast implementation, Φ can be determined once from an average coil 
image of the center slice in the volume (on the b=0 image for DWI). To further increase speed, we have 
performed the ghost correction with various image resolutions and with full and half FOVx. The rationale 
for the latter may be seen in the uncorrected image without regridding (Fig 1b), where there is little 
information in the image outside the central FOVx/2. Using the central part of image space during the 
estimation of Φ corresponds to using every other readout point in k-space. Image acquisition was 
performed on a volunteer on a 1.5T GE HD system (GEHC, Milwaukee, WI) with 50 mT/m gradients 

using a DW-EPI sequence with 1-4 shots, 128×80(128) half Fourier acquisition and FOV = 24×24 cm. 
Odd/even misalignments were introduced post-acquisition to enforce a robust correction strategy. 
Results. The k-space data in Fig. 3a-d, corresponding to 1 through 4 shot EPI, was first corrected using all 
data, which is presented in Fig. 3e-h. The time for convergence was only 2.1 seconds including the pre-
processing step. In Fig 2, the penalty of removing k-space data in the interest of speed is presented. For any 
number of shots, the number of ky lines could be reduced to 24 (Fig. 2c) without affecting the ghosting level. 
Reducing resolution in the x-direction by an equal amount had a bad impact on the ghosting situation (Fig. 
2a-b). However, keeping the x-resolution (or kx,max) while reducing FOVx to half, did not affect 
Φ significantly. In Fig. 3i-l, corrected images are shown using 24 ky lines, full x-resolution and half FOVx. 
Computation time in this case was only 0.3 seconds. 
Discussion. We have shown that it is possible to correct for Nyquist ghosting in about 0.3 seconds in Matlab 
on single- and multi-shot T2w EPI. Assuming no motion between shots, this method works equally fast and 
well for single and multi-shot EPI data since the search space remains the same, the only difference is in 
which lines of k-space need to be adjusted. The robustness lies mostly in the choice of good starting guess Φ0, 
which also makes the convergence faster. Because the slice-to-slice variation was observed to be small for all 
the cases studied, it was sufficient to estimate Φ on the center slice and apply it to all other slices. Slight 
improvement for edge slices may be obtained in some cases by also estimate Φ on one of the outer slices, but 
was not found necessary for the clinical routine. Without affecting the residual ghosting level, it was possible 
to reduce the computational time from 2 to 0.3 sec by using every other kx point (FOVx/2) and only 24 ky 
points in k-space. This algorithm makes no assumptions about the object shape, works equally well for single- 
and multi-shot data, and does not require user input.  The only restriction is that it cannot be used if the 
object is aliased in the phase encoding direction if FOVy is too small.  
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Figure 1 a) k-space (w/ ramp sampling) 
acquired with 4-shot EPI. Additional 
odd/even echo misalignment was 
introduced this work. b) Reconstructed 
image from a), omitting ramp sampling 
correction. About half FOV in readout 
direction is outside the object, which 
cannot drive the search towards the 
minimum.

 
Figure 3 
Sum-of-squares difference (SSD) between image corrected using all 
data and reduced/cropped data. 1-4 shot acquisitions are shown. a) 
SSD vs. # readout points used. b) as a), but also with skipping every 
other point in kx (=> half image FOVx). c) SSD vs. # ky lines using i) full 
FOVx, and ii) half FOVx. 

Figure 4 
Images before and after ghost correction. Columns are (left to 
right): 1-4 shots. Top panel (a-d) shows images before 
correction. Mid panel (e-h) shows images after correction using 
all k-space data. Bottom panel (i-l) shows the images after 
correction using half FOVx and only 24 out of 80 ky lines for 
speed purposes. Subtle residual ghosting in f,g,j,k is due to 
motion between shots, which we currently don’t model. 

 
Figure 2 
The entropy metric as a function of  Φ = [φcon φlin] for a) 1-shot, b) 2-shot, c) 3-shot and d) 4-shot 
EPI. True solution is indicated with the arrow. These surface plots show that the entropy metric is 
only a smooth quadratic function very close to the true minimum. If the MR-system is not well 
calibrated (i.e. close to the solution), it is easy to get trapped in a local minimum. The function is 
π−periodic in the φcon dimension, why a semi-constrained search is adequate. 
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