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INTRODUCTION 
Trabecular bone (TB) micro-structure is inherently anisotropic, which is a consequence of Wolff's law [1]. It is well known that trabeculae transverse to the main loading 
direction are lost preferentially during aging. Therefore, mean trabecular thickness and its spatial anisotropy are relevant to the bone's mechanical behavior. Measuring these 
parameters in-vivo my micro-MRI is a challenging goal not yet achieved with accuracy sufficient to detect changes in individual subjects. TB is a quasi-periodic structure so 
its autocorrelation function (ACF) carries information about the TB thickness and spacing [2], as well as their dependence on orientation. The full width at half maximum 
(FWHM) of the ACF, along a given direction, can be used as an estimate of TB thickness in that direction. Using the Wiener-Khintchine theorem [3], the ACF can be 
calculated directly from k-space data acquired in standard, rectilinear MRI. Here we focus on the anisotropy tensor describing TB thickness along different directions as 
estimated by the FWHM of the ACF. We show that by selective, anisotropic sampling only along the principal directions, one can quickly and with high precision estimate 
the principal values of the TB thickness anisotropy tensor. The principal directions can be determined from short, low resolution scans. 
THEORY AND METHODS 
Let us examine the behavior of the ACF when its Fourier transform (FT) is sampled on an anisotropic grid. 
For simplicity, we will consider only the two-dimensional (2-D) case. To this end we discretely sample the 
analytic FTs of two ACFs - a product of two Lorentzians and a product of two Gaussians, fx(x)fy(y), as shown 
in Figs. 1a) and b). These two functions represent two extremes - the Lorentzian product has a FWHM that 
varies sharply with orientation while the FWHM of the Gaussian product varies more smoothly with its 
direction. The FWHM of the ACFs was chosen to be 2(4) along the x(y) direction measured in arbitrary units. 
This choice produces an anisotropy tensor of the FWHM with principal axes parallel to the coordinate axes 
and principal values of 2 and 4 as shown in Figs. 1c) and d).  
The FT of each ACF was first sampled on an isotropic grid of 128x128 points with a field of view of 128x128 
units, resulting in a voxel size of 1x1. This choice is realistic for our application where individual trabeculae 
cover only a few voxels. The resulting ACFs obtained from inverting the discrete FT, Figs. 1a) and b), were 
then sampled along 360 directions spaced by 1º. The FWHM was determined along each of these directions 
(FWHM directions, for brevity). The resulting angular dependence of FWHM is shown in Figs. 1c) and d). 
This estimate of the FWHM was taken as the gold standard (inner solid line in Figs. 1c) and d) ).  
We then sampled a rotated FT of the ACF on the same 128x128 grid. This was done for 36 angles, α, spaced 
by 5º using analytic formulas for the FT of a Lorentzian and a Gaussian. The resolution in the y direction was 
then reduced by filling with zeros portions of k-space for which |ky|>kmax, where kmax is the wave vector 
corresponding to the lower voxel size in the y direction. An inverse FT resulted in rotated ACFs sampled with 
anisotropic resolution and sinc interpolated along the y direction. For each angle α, we determined the FWHM 
of the ACF along the high resolution, x, direction. In this way we calculated the angular dependence of the 
FWHM as determined from anisotropically sampled ACFs with the high sampling resolution always parallel 
to the FWHM direction. The resulting angular dependencies show that a lower resolution perpendicular to the 
FWHM direction significantly affects the estimate of the FWHM only away from the principal directions. We 
can thus obtain a high resolution estimate of the FWHM along a principal direction by anisotropically sampling data using some form of inner-volume imaging with reduced 
resolution perpendicular to that of the principal direction. The principal directions can be determined beforehand from a fast low resolution scan. 
RESULTS AND CONCLUSION 
Since the primary goal of the proposed method is to detect orientational dependences of TB thickness we examined the effect of anisotropic sampling on the FWHM. A high 
resolution micro-CT scan of human trabecular bone (voxel size of (16µm)3 ), was thresholded to obtain a baseline image. The matrix size of the image was 250x250x250. 
The baseline TB structure was dilated by some number of voxels to simulate a change in trabecular thickness. This image was then convolved with a Gaussian (σ=1voxel) to 
account for partial volume effects present even in micro-CT images. The FT of this image was then zero filled, similarly as above, to simulate a lower scan resolution in the 
y-z plane. Complex white noise was added in the non-zero region of the FT. The inverse FT then produced a noisy, anisotropically sampled image, sinc-interpolated in the 
lower resolution, y-z plane (the matrix size was the same as in the initial image). Subsequently, the FWHM along the high resolution, x, direction was determined for various 
y-z plane resolutions and various dilations of the trabeculae. The linear y-z plane resolution was 
decreased by a factor of 2,4,8,16 and 32. An incidental advantage of the anisotropic sampling is an 
increase in signal to noise ratio (SNR) due to the increased voxel size at lower y-z plane 
resolutions. The noise amplitude was chosen such that for the highest resolution image the SNR 
was smaller than 1 and trabeculae could not be discerned in the image. As Fig. 2a) shows, at that 
resolution changes in trabecular thickness could still be detected albeit with significant noise. This 
surprising result is a consequence of the robustness of the ACF to noise. In a noisy image the main 
noise contribution to the ACF is the autocorrelation of the noise which is a delta function at the 
center of image space. This feature can easily be removed by quadratic interpolation of the ACF at 
the center of image space, as was done in our simulations. In accordance with Fig. 1 the thickness 
estimate increases at lower resolutions since we did not choose a principal direction for the high 
resolution, x, FWHM direction. Nevertheless, there is a clear linear dependence between the 
FWHM and the number of dilations (thickness) at all resolutions, with slopes 0.51, 0.63, 0.56, 
0.53, 0.51, 0.38 and 0.35 corresponding to the noiseless and noisy image with 0, 2, 4, 8, 16 and 32 
times lowered linear y-z resolution, respectively. We see (Fig.2), that the 8x lowered resolution 
offers a “sweet spot” with significant, 82, acquisition-time gains at a sensitivity and even accuracy 
close to that of the noiseless image. As a way to measure the principal values of the thickness 
anisotropy tensor, we thus propose a fast autocorrelation anisotropic readout (FAAR) acquisition 
along the principal directions of the anisotropy tensor as determined by a lower resolution scan. 
This method offers great promise for high resolution in-vivo measurements of trabecular bone 
thickness and anisotropy. 
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Figure 1. a) Lorentzian and b) Gaussian product ACF. Polar 
plots of FWHM estimates (in pixels) for c) Lorentzian and 
d) Gaussian product ACFs at various levels of anisotropy. 
Inner solid line corresponds to highest, isotropic resolution. 
Dashed/dotted line corresponds to halved/quartered y
resolution. The outer solid line corresponds to an 8x larger 
voxel size in y.  

Figure 2. a) and b) FWHM estimates along the high resolution direction 
for various y-z plane resolutions as a function of the number of dilations. 
c) x-y (perpendicular to the bone's axis) and e) y-z (parallel to the bone's 
axis) slices of the noiseless high resolution image. d) and e)  
corresponding slices in the noisy image with the linear y-z resolution 
reduced by a factor of 8. 
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