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Introduction 
The values of apparent diffusion coefficients (ADCs) in biological tissues and their changes to patho-physiological conditions have been the object of 
numerous theoretical and experimental studies [1-5]. A still much debated question is to how to interpret the measured ADCs in terms of physiological 
parameters such as compartment fractions, exchange/permeability and inherent compartment diffusivity. In a previous communication we described a 
methodology for measuring the intracellular water signal in cultured rat brain cells (C6) by taking advantage of a Gd-DTPA induced magnetic 
susceptibility shifts of the resonance frequency of extracellular water [6]. In this report we present a q-space analysis of the intracellular water diffusion 
in C6 cells using the signal originating exclusively from the intracellular space. 
Materials and Methods   
Hollow-Fiber Bioreactor (HFBR). The HFBR system was constructed by Microgon (Laguna Hills, CA, USA). It consists of a 27mm O.D. 
polycarbonate casing containing approximately 450 cellulose acetate/cellulose nitrate copolymer microporous hollow fibers (0.32 mm ID) with a pore 
size of 0.2 microns. Cell Culture. Rat glioma cells (C6) were obtained from ATC and routinely cultured in Dulbecco’s modified Eagles medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS). An inoculum of ~4 x 108 cells was infused into the extrafiber space at the beginning of 
the experiment. Diffusion-weighted MRS, DWMRS experiments were carried out using 34 linearly spaced gradient strengths ranging from 0 to 850 
mT/m and 16 diffusion times (20-160 ms) using a standard diffusion-weighted stimulated-echo pulse sequence.  The maximum q-value was 0.164 υm-

1. Other parameters included δ = 7ms, TE = 20ms, and TR = 2.5 sec.  
Results and Discussion 
Figure 1 shows a fully relaxed proton spectra collected from a confluent HFBR after introduction of 5 mM Gd-DTPA to the perfusate. As previously 
shown [6], the two upfield peaks originates from the extracellular water including the intra and extra fiber space (at +185 Hz) and  from the water 
located within the fiber walls at (+130 Hz) [6]. The intracellular water signal is relatively 
broadened and minimally shifted (+ 20 
Hz) from the initial water resonance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows the signal decays for the intracellular water signal as a function of q at four selected diffusion times. These signal decay curves were 
Fourier transformed to obtain the displacements distributions shown in Figure 3. The displacement distributions could not be fit to a single Gaussian 
distribution model (solid lines in Figure 3), particularly at longer diffusion times. Non-Gaussian behavior of water diffusion has been observed and 

predicted for a single compartment with boundaries or in presence of a combination of 
restriction and exchange [5].  
 
In contrast, bi-Gaussian distributions were found to adequately fit the displacement 
distributions (Figure 4, A-D). For each displacement distribution (●), Figure 4 shows the 
two individual Gaussian distributions (▬▬ and ▬▬) and their sum (▬▬). The full 
width at half maximum (FWHM) computed from the individual Gaussian distributions are 
plotted versus diffusion time in Figure 4E and show the existence of a narrow component 
that is independent of diffusion time and a broader component whose width increases with 
diffusion time. These results would be consistent with the existence of a highly restricted 
pool of water within the cells coexisting with a pool of water both restricted and at 
exchange with the extracellular water. However, the bi-Gaussian fit used in this study is 
essentially phenomenological.  We are currently developing non-analytical models using 
finite-difference methods to better describe our diffusion data in terms of structural and 
physiological parameters. 
 
References: [1]Sehy et al, MRM 48:765 (2002), [2]Latour et al, PNAS 91:1229 (1994),  
[3]Pfeuffer et al, NMR Biomed 11:19 (1998), [4]Szafer et al, MRM 33:697 (1995),  
[5] Stanisz, IsrJChem; 43:33 (2003), [6]Galons et al. MRM 54:79 (2005) 
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Figure 1: 1H spectrum in presence of 5mM
  Gad-DTPA Figure 2: Intracellular signal decays  Figure 3: Displacement distributions 

Figure 4: Bi-Gaussian  fit to 
displacement distributions at 
various ∆  (A-D) and FWHM 
calculated from fits (E) 
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