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Introduction: A previously reported method for in vivo lung morphometry is based on evaluation of anisotropic diffusion of 3He gas in acinar lung 
airways [1]. However, the accuracy of this method has not been analyzed yet. Herein we present a theoretical analysis of estimated experimental 
errors inherent to this approach. We derive expressions representing a dependence of these errors on experimental conditions and diffusion pulse 
sequence b-values.  
Theory: We use an approach developed by Bretthorst [2, 3] to analyze how the estimated diffusion coefficients depend on the �true� diffusion 
coefficients, signal-to-noise ratio, data sampling and total number of data values. The basic quantity in Bayesian analysis is a joint posterior 
probability ( ){ }jP p D Iσ  for model parameters { }jp  given all of the data D, the standard deviation σ and the prior information I. For the model, in 

which 3He gas diffusion in lung acinar airways approximated by cylinders [1], the signal S as a function of the b-value depends on three parameters: 
the signal amplitude S0 and diffusion coefficients along the cylinder axis, DL, and perpendicular to it, DT: 

 ( )( ) ( )1/ 2 1/ 2
0( ) exp / 4 erf ,T an anS b S bD bD bDπ ⎡ ⎤= − ⋅ ⎣ ⎦  where  an L TD D D= − . (1) 

The standard deviation σ coincides with a Gaussian prior probability that is assigned to represent what is known about noise. In the high signal-to-

noise approximation ( ) ( )2{ } exp / 2jP p D I Qσ σ∝ − , where 
2�( ) ( )i iQ S b S b⎡ ⎤= −⎣ ⎦∑  [2, 3]. Here ( )iS b  depends on the model�s parameters to be 

estimated { }0 , ,L TS D D  according to Eq.(1); �( )iS b  is determined by the same Eq.(1) with substitution { } { }0 0
� � �, , , ,L T L TS D D S D D→ , where 

0
� � �, ,L TS D D  are �true� values of these parameters. The sum in Q is over the b-values, , 0,1,..., 1ib i b i N= ⋅ ∆ = − . To estimate any parameter in the 

model, a posterior probability for the parameter should be calculated. This reduces to integrating ( ){ }jP p D Iσ  over the two other parameters. The 

integrations result in the posterior probabilities for the parameters { }jp  in the Gaussian form, ( ) ( )2 2�exp ( ) / 2j j j jP p D I p pσ σ∝ − − , where σj is the 

standard deviation of the parameter jp .  

Results: The estimated values of the parameters { }jp  can be written as 
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⋅
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where jε  are the expected relative errors of the estimated parameters, SNR is the signal-to-noise ratio. Explicit expressions of the functions Uj of 

parameters �
L LB b N D= ∆ ⋅ ⋅  and �

T TB b N D= ∆ ⋅ ⋅  are not displayed here due to their complicated structure.  
   The analytical predictions given by Eq. (2) were verified by computer simulations. For this, Gaussian noise was added to ideal data (from Eq.(1) 
with known DL and DT) and then analyzed according to Eq.(1) to get the apparent values of DL and DT . This was repeated for each case 100 times to 
calculate the rms uncertainties in the reported DL and DT and corresponding relative errors εL and εT. Results are in a good agreement with Eq. (2).  

 
   Figure 1 illustrates the dependence of the relative errors εL and εT of the estimated diffusion coefficients DL and DT as functions of the maximal b-
value, max ( 1)b b N= ∆ ⋅ − , for 100SNR = , 2� 0.4cm /secLD = , 9N = . Black, red and green lines correspond to �

TD = 0.05, 0.1 and 0.15 cm2/sec, 

respectively. The b-value dependence of the signal (1) for the same values of �
LD  and �

TD  is shown in Fig.1c. 

Discussion: An analysis shows that for a fixed N the errors εL and εT as functions of bmax have minima at some values of bmax depending on �
LD  and 

�
TD . Although these minima are achieved at rather high b-values, the signal, due to the slower than exponential dependence on b (1) may still remain 

above a noise level (e.g., minima at the green line in Fig. 1a,b are achieved when the signal is about 0.1). The minima are rather shallow and are 
barely visible on the plots. Such a dependence is rather advantageous because accurate results can be achieved even at substantially smaller b-values 
as compared to the minima.  
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