Mouse Brain Iron Distribution: Histochemical and Quantitative MRI (7T) Assessment
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Introduction: Iron plays an essential role in most of the critical metabolic functions of the brain and its regulation is altered in a variety
of neurodegenerative diseases. Since NMR signal decay is influenced by the presence of iron, MRI has been frequently used as a non-
invasive means to study brain iron. Most studies using MRI to assess brain iron have relied upon measurements of the transverse
relaxation rates (Rz, R2* and Ry’) [1], but these parameters can also be affected by iron-independent factors. Recently, we have
developed a new MRI-based technique referred to as Magnetic Field Correlation (MFC) Imaging [2;3] for measuring microscopic
magnetic field inhomogeneities, such as those generated by iron-rich cells. MFC has the advantage that it is not influenced by
molecular relaxation mechanisms, such as dipolar interactions, and consequently, may be a more specific measure of brain iron
providing information complementary to that given by other MR parameters. In this study, we investigated the relationship between
quantitative MFC, R,, Ry* and Ry’ values and iron distribution (determined from published histochemical analyses [4]) in normal mouse
brain at 7Tesla.

Methods: A total of 7 (C57BI/6 x DBA2) x SW mice (7-month old) were perfused with phosphate-buffered saline (PBS) (pH 7.4) through
the left cardiac ventricle, followed by 10% buffered formalin. After perfusion fixation, the brains were removed, embedded in agar
(0.4%), positioned at the center of a plastic tube and tightly sealed for MR measurements. All experiments were performed ona 7 T MR
system (SMIS, Guilford, UK). R, was acquired using a multi-slice single spin-echo sequence with the following imaging parameters: 2
averages, 25 slices, FOV=12.8mm, matrix=64 x 64, echo times (TE) of 15,25,40,60 ms, and repetition time (TR) of 3000 ms. R,* was
acquired using a gradient echo sequence with the following imaging parameters: 4 averages, 25 slices, FOV=12.8mm, matrix=64 x 64,
TE of 4,8,13,20 ms, and (TR) of 750 ms. For the calculation of R; and Ry*, parametric maps were generated using exponential fits to
multi-echo data using MEDx software (Sensor Systems Inc., Sterling, VA). Ry’ was calculated as (R2*- Rz). MFC images were acquired
using an asymmetric dual spin-echo pulse sequence. Imaging parameters were TE/TR = 30/3000 ms, FOV=12.8mm, slice thickness
200 ym, matrix=64 x 64, and echo time shifts of 0, 3, £6, +7.8. MFC values were calculated by non-linear least square fit of signal
intensities on echo time shifts, based on the relationship
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the known increase of iron content occurring with age in the
globus pallidus. Furthermore, the data indicate that the regional variation in MFC values is higher than that for the other MR parameters
(Gpa rMFC mean value for 7-month old group (n=7) = 16.93 and for 20-months old group (n=2) = 22.53) suggesting that MFC imaging
is more sensitive to iron-induced differences in brain tissue susceptibility. In conclusion, our data suggest that MFC imaging provides a
distinct MR measure and can be a potentially useful tool for assessing brain iron and the role of brain iron disruption in the

pathogenesis of many neurodegenerative diseases.
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