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Introduction: The asymmetry of Z-spectra can be used to study pH-dependent exchange processes in vivo (1). In radiation 
damping (RD) (2), an interaction between coil and sample, transverse magnetization Mxy generates a secondary radiofrequency 
magnetic field. Here we show that RD unexpectedly causes Z-spectrum asymmetry at high B0 through an interaction with probe 
tuning. This effect may potentially complicate pH mapping methods which rely on Z-spectral asymmetry. 
Theory: RD can be analyzed by adding feedback terms to the Bloch equations (3); in the general single-pool case they become 

where α = 1/T1, β = 1/T2, ω1 = RF amplitude, and kd 
determines the magnitude of the RD field. The phase 
angle for an LCR circuit  

( )[ ])1/(2tan 1 δδδθ ++= − Q  depends on the deviation 

δ = (ω −ω0) /ω0 from probe resonance, where Q is the 
probe quality factor, ω0 the electrical resonant frequency 
and ω the RF frequency used. Because probe tuning is 

usually carried out by minimizing reflected RF power, in a typical "well-tuned" probe θ  lies in the range ±15°. In Z-spectroscopy, 
water signal saturation by low-power RF is measured as a function of irradiation frequency ω. Magnetization exchange between 
water and labile protein sidechain protons causes a drop in water signal when ω1 matches their Larmor frequency. A convenient 
measure of the effect is the Z-spectrum asymmetry A(ω)=S(–ω)−S(ω�), where ω=0 for the water resonance. Accurate experimental 
determination of A(ω) requires interpolation between spectral data points. 
Methods: NMR experiments were carried out on a Varian INOVA 400 spectrometer. Z-spectra were acquired using 20 s 
irradiation with γB1/2π = 24 Hz and read flip angle 10º. T1 and T2 relaxation times of water were measured separately. Samples 
used were H2O (1-pool model) and 0.4 M urea (2-pool model) in phosphate buffer (pH 7), each containing 10% D2O, in 5 mm 
NMR tubes. The Bloch equations for 2-pool exchange with RD were solved and data interpolated using Mathematica. 
Results and Discussion: At electrical resonance, the 
effect of RD is to narrow the Z-spectrum, but even slight 
detuning produces a dramatic asymmetry peak (Fig. 1). 
The narrowing arises because at electrical resonance the 
RD field opposes B1 and is strongest where Mxy is 
greatest, on the flanks of the Z-spectrum dip. The 
asymmetry arises because the deviation from 
orthogonality between Mxy and the secondary RF field 
gives a handedness to the perturbation of the net RF field. 
In the spectrometer used the tuning error at minimum 
reflected RF power is 0.25 MHz, corresponding to θ = 12° 
for the coil Q of 210. At given tuning offset, the position 
and size of the RD-peak in asymmetry depend on 
relaxation (short T1 narrows the Z-spectrum), ω1 (high ω1 
broadens the Z-spectrum) and kd (strong RD increases the 
peak amplitude).  
In the urea sample (Fig. 2), the effects of RD on 
asymmetry of Z-spectra are of same magnitude as those of 
exchange, and RD changes the amplitude of the exchange 
peak by up to 10%. The effects would be more serious for 
species resonating closer to H2O, for stronger damping, 
and for higher ω1. In our system the damping field kdM0/π 
was 47 Hz for H2O, and 42 Hz for the urea sample. In in 
vivo experiments RD is usually weaker, but so are the pH-
dependent changes being studied. 
Conclusions: We have shown that RD causes asymmetry 
in Z-spectra unless the coil is at exact electrical resonance. 
RD may affect in vivo applications of magnetisation 
transfer techniques and complicate the determination of 
pH via Z-spectroscopy at high B0 using high Q coils. 
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Figure 1: Mz/M0 for different electrical tunings, 1-pool sample (H2O) 
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Figure 2: Mz/M0 for different electrical tunings, 2-pool sample (0.4 M urea) 
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