Fiber-Oriented Regularization of Diffusion Tensor Images
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Introduction
Diffusion tensor regularization approaches have recently focused on boundary preservation during reduction of noise in diffusion tensor images [1-3]. However, since
diffusion tensor images suffer from both noise and partial volume averaging (PVA), regularization approaches robust to PVA are called for. To meet this need, this
study proposed a new regularization method that is based on a Bayesian framework and fiber-oriented regularization scheme. Experiments with synthetic data have
demonstrated the superior performance of this technique in the presence of noise and PVA.
Methods
1. Framework: In noisy diffusion tensor imaging data, the diffusion tensor element vector d = (D;; Dy, D3; D> D,; D;;) at each voxel is assumed to be a multivariate
normal distribution: d ~ N(# 2), where Dj; is the element of diffusion tensor matrix (i, j = 1,2,3), g represents the unknown true tensor element vector, and 2 is the
covariance matrix. The Bayes decision in tensor regularization is to determine the value of g that maximizes the a posteriori (MAP) probability P(gld), which is the
product of the conditional probability density p(dli) and the a priori probability P()), i.e.:

p=argmax (P(u; |d)) =argmax (p(d | u,)- P(p )Ip(d)) = argmax (p(d | p,)- P(u,), j=1,2 , ....n)
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Under the assumption of a multivariate normal distribution: g ~ N(m, S), where m is the mean and S is the covariance matrix, P(&d) still behaves normally, i.e., P(zld)
~ N(ﬂ,Y’), where i =(Z"'+SHY'(Z'd+S"'m), ¥ = X"'+S§ "' [4]. Hence the MAP solution for tensor regularization has a mean value of H=p and a covariance

matrix ¥ < Xor S, giving an optimal estimation of the true tensor matrix with smaller uncertainty. d and 2 can be estimated directly from the measured diffusion
weighted images [5], and S is estimated from a homogeneous high anisotropic region. Since S represents the uncertainty of underlying fibers, it can be assumed to be a
constant for a specific data set. m is a fractional anisotropy (FA) weighted average of three consecutive tensor matrices (at previous, present and next voxels) along the
propagating direction of a fiber. Fiber propagation is performed by the FACT fiber tracking method [6].

2. Tests with synthetic data: The synthetic data set was designed to contain anisotropic and isotropic regions, and a fiber crossing area as shown in Fig. 1(a). To mimic
closely in vivo conditions, synthetic tensors were constructed to have a trace of 2.1%10” ¢m?s, and diffusion weighting was along six non-collinear directions with a b
value of 1000 s/mm®. Tensors for anisotropic regions were designed to be cylindrically symmetric (4, > A, = A3) with an identical eigenvalue contrast (A4 = A,- A=
0.8%10° cm?/s); tensors for isotropic regions and the fiber crossing area were isotropic (4, = A, = A;). The signal-to-noise ratio of this data set was 20, and the data size
was 10*10*5 voxels. S was estimated from a homogeneous region with high FA as shown in the bottom blue rectangle in Fig. 1(a). Tensor regularization was started
from two different seed regions and propagated until some termination criteria were met (e.g. out of boundary, sharp turn, etc.).

3. Performance evaluation: The mean absolute difference between the regularized tensor matrices D, and true tensor matrices Dy was defined to be the index for

measuring the performance of tensor regularization: 1 &S » » 1> where N is the total number of regularized voxels. For performance comparisons, a
§=—2 21D, =Dy;"|
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Gaussian smoothing method (kernel size = 5*5*5, variance = 1) and an anisotropic smoothing method [2] (iterations = 70) were used.

Results

Figure 1 shows the regularization results with synthetic data using the three regularization methods mentioned above. Fig. 1(b-d) and (f-h) respectively show the results
from the start region I and II (red: Bayesian; green: Gaussian; blue: anisotropic), which are superimposed on the original noisy tensor field. Fig. 1(e) shows the index &
with no smoothing and with smoothing by the three methods. It can be seen that the Bayesian method performs best not only in noise reduction, but in boundary
preservation as well. Particularly in the PVA region it outperforms the other two methods and recovers the true fiber orientation.
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Figure 1. Regularization results with synthetic data: (a) the noisy tensor field with line segments indicating the directions of the major eigenvector.

(b-d) results from the start region I by the Bayesian (b), Gaussian (c), and anisotropic (d) method. (f-h) results from the start region II with the three

methods respectively. (e) performance measure 8 with and without smoothing (N: no smoothing; G: Gaussian; A: anisotropic; B: Bayesian).
Discussion and conclusion
This study has demonstrated that the new approach has a superior performance of noise reduction, boundary preservation, and PVA robustness in regularizing diffusion
tensor images. However, it still needs improvements to resolve larger PVA regions and more complex PVA patterns due to such as fiber kissing, branching, etc.
Performance evaluation and method comparisons using in vivo human tensor data will be made in the future.
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