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Problem: The relationship between diffusion-weighted images (DWIs) and the (apparent) diffusion tensor (DTI) is
(1) 1'? = Jexp(—=b'” e D)+ noise'”

@ _; : . th _ @) _ i g . @ _ 2 (@) (@) §2
where /'”’ =image intensity for the ¢ DWI (¢=0,1,...), b" =weighting matrix [e.g., b, = y°G,"G;"6" (A-6/3)],
D=diffusion tensor (unknown), J="true" image intensity for b=0 (unknown), andbeD = Z /b”.DU . The simplest way to

estimate the diffusion tensor from diffusion-weighted images is to take the logarithm of (1) and ignore the noise:
2) ~log(1/7)=b"eD

which is a set of linear relationships between the DWI data ( / ), scan parameters (b'"), and the diffusion tensor (D) —

assuming that J is known (usually J = I, acquired with b'” = 0); D is solved for in (2) by linear least squares.

One difficulty with the log-linear approach is that the resulting D might not be positive definite (p.d.) [1]. A
second difficulty is that the noise is not being treated properly [2] — linear least squares is appropriate when the noise is
additive and each sample has the same variance; taking the logarithm violates both suppositions. When the eigenvalues of
D are significantly disparate, these violations often result in poor estimates for D. We instead choose to fit D directly to
(1), using a method sure to return a p.d matrix. Our method extends Tschumperle [3] to deal with (1) rather than (2).
Solution: The goal is to find the value J and the symmetric p.d. matrix D that minimize the weighted error functional

3) ED,J/)=1>w [Jexp(-beD)— 1T

As J appears quadratically, it can be estimated directly: J(D)= [zq w1 “ exp(—b'" o D)} / [quq exp(—2b"’ e D)] . We use

a modified gradient descent method to compute D (minimizer of E). The gradient matrix of E wrt D is
F= —Zq w, [J exp(-b'” e D) — 1" ]b“” . Pure gradient descent would solve the differential equation dD(s)/ds =-F(D),

initialized with D(s=0) calculated via (2). However, this method of minimizing (3) often leads to an indefinite D. We use
instead the fastest descent direction linear in F that guarantees D remains p.d., by solving

oD(s)/ds = - [F(D)D2 + DZF(D):I ; along this curve, aE/as = —2||FD||2 . The descent curve is computed using a Padé
approximant method consistent with this equation, which also ensures D remains p.d. even for finite stepsizes: define
H (e&)=1% % €FD , and then D(s+&)=H _(&)H, (8)_1D(S)H+ (¢)'H_(&). The stepsize € is chosen as large as possible,
but ensuring that E(s) is decreasing. After convergence, we calculate the residuals; the initial weights are modified to

down-weight outlier I'” values, and the descent is restarte®. The result is an eff1c1ent nonlinear robust [4] positive

definite Dﬁ@t&g@i{g& rfirgg &gq&tg@re is included n;AFNI
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References: methods; voxels with negative eigenvalues are black.
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