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Problem: The relationship between diffusion-weighted images (DWIs) and the (apparent) diffusion tensor (DTI) is 
(1)  I (q) = J exp(−b(q) • D) + noise(q)  

where I (q) =image intensity for the qth DWI (q=0,1,…), b(q ) =weighting matrix [e.g., bij

(q ) = γ 2Gi

(q )G j

(q )δ 2 (∆ − δ / 3) ], 

D=diffusion tensor (unknown), J="true" image intensity for b=0 (unknown), and b • D ≡ b
ij
D

iji , j∑ .  The simplest way to 

estimate the diffusion tensor from diffusion-weighted images is to take the logarithm of (1) and ignore the noise: 

(2)  − log I (q ) J( )= b(q ) • D  

which is a set of linear relationships between the DWI data ( I (q ) ), scan parameters ( b(q ) ), and the diffusion tensor (D) — 
assuming that J is known (usually J = I (0 ) , acquired with b(0 ) = 0 ); D is solved for in (2) by linear least squares. 
 One difficulty with the log-linear approach is that the resulting D might not be positive definite (p.d.) [1].  A 
second difficulty is that the noise is not being treated properly [2] – linear least squares is appropriate when the noise is 
additive and each sample has the same variance; taking the logarithm violates both suppositions.  When the eigenvalues of 
D are significantly disparate, these violations often result in poor estimates for D.  We instead choose to fit D directly to 
(1), using a method sure to return a p.d matrix. Our method extends Tschumperle [3] to deal with (1) rather than (2). 
Solution: The goal is to find the value J and the symmetric p.d. matrix D that minimize the weighted error functional 

(3)  E(D, J ) = 1
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As J appears quadratically, it can be estimated directly: Ĵ (D) = w
q
I (q ) exp(−b ( q ) • D)

q∑⎡⎣ ⎤⎦ w
q

exp(−2b ( q ) • D)
q∑⎡⎣ ⎤⎦ . We use 

a modified gradient descent method to compute D̂  (minimizer of E).  The gradient matrix of E wrt D is 

F = − w
qq∑ J exp(−b ( q ) • D) − I ( q )[ ]b (q ) .  Pure gradient descent would solve the differential equation ∂D(s) ∂s = −F(D) , 

initialized with D(s=0) calculated via (2).  However, this method of minimizing (3) often leads to an indefinite D.  We use 
instead the fastest descent direction linear in F that guarantees D remains p.d., by solving 

∂D(s) ∂s = − F(D)D2 + D2F(D)⎡⎣ ⎤⎦ ; along this curve, ∂E ∂s = −2 FD 2
. The descent curve is computed using a Padé 

approximant method consistent with this equation, which also ensures D remains p.d. even for finite stepsizes: define 

H± (ε ) = I ± 1

2
εFD , and then D(s + ε ) = H− (ε )H+ (ε )−1D(s)H+ (ε )−1 H− (ε ) .  The stepsize ε  is chosen as large as possible, 

but ensuring that E(s) is decreasing.  After convergence, we calculate the residuals; the initial weights are modified to 
down-weight outlier I (q )  values, and the descent is restarted. The result is an efficient nonlinear robust [4] positive 
definite D estimator.  Free C software is included in AFNI. 
Results (Is a picture is worth 1000 words?) 
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Fractional anisotropy with linear (LEFT) and nonlinear (RIGHT) 
methods; voxels with negative eigenvalues are black. 
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