

Three Dimensional SPI PC-MRA at 3 Tesla

K. V. Koladja¹, J. G. Pipe¹

¹MRI Research, St. Joseph's Hospital, Phoenix, Arizona, United States

INTRODUCTION: A three-dimensional Spiral Projection Imaging (SPI) trajectory⁽¹⁾ has excellent potential for Phase Contrast MRA (PC-MRA)⁽²⁾ because each encoding trajectory begins from the center of k-space. With no slice select gradient employed, there are low contributions from the imaging gradients to the motion-encoding moments. Its rapid scan times enable the use of multiple-Venc scans, which can use high-Venc data to unalias very high SNR low-Venc data^(2,3). This work investigates 3D SPI PC-MRA on GE 3T94 EXCITE scanner and HD 8 channel high resolution brain array. We also investigate the effect of retrospective ECG gating on head blood vessels.

METHODS and RESULTS: Three-dimensional SPI PC-MRA has been deployed a GE 3T EXCITE scanner. Typical parameters for application this sequence in the head using the HD 8 channel high resolution coil are: (24 cm)³ FOV, (0.8 mm)³ resolution, TR 26ms, 20 variable density spiral interleaves per spiral plane, 120 planes, scan time 1 minute or less (depending upon the # of interleaves and degree of undersampling) per volume. This technique uses 7 sets of velocity encodings, for a total scan time of 7 minutes. Phase contrast images are reconstructed as shown in Fig.1⁽⁴⁾ in each orthogonal direction for low-Venc and high-Venc. High SNR low-Venc data are then unaliased using high-Venc and signal loss data⁽²⁾. The image shown in Fig. 3 is the rms velocity for unaliased high SNR low-Venc data reconstructed using measured ECG waveform to weight the data (Fig. 4) during sampling density correction.

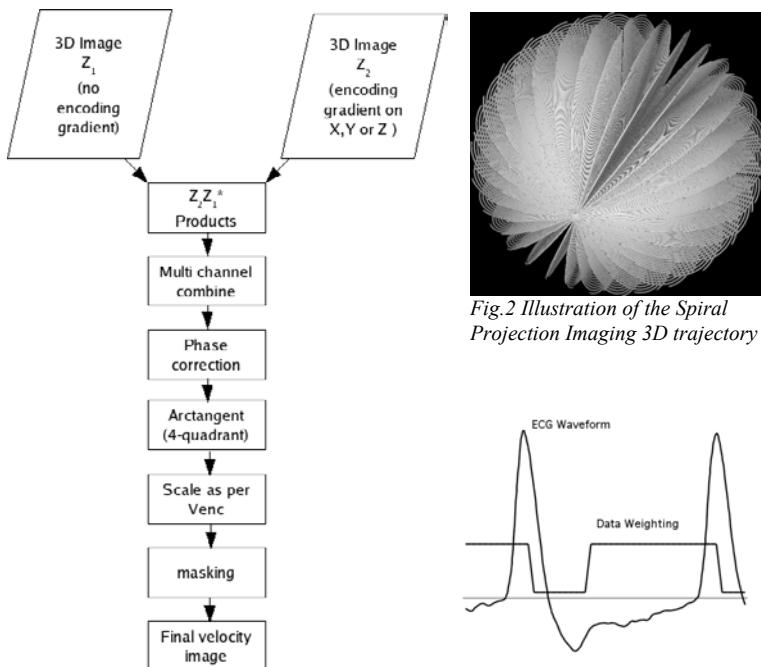


Fig.2 Illustration of the Spiral Projection Imaging 3D trajectory

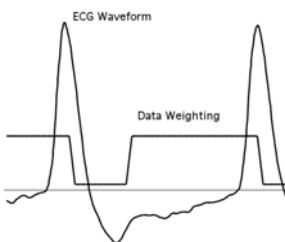


Fig.4 data weighting according to ECG waveform

Fig.1 flowchart for multichannel PC-MRA

Fig.3 Axial limited MIP of unaliased high SNR low-Venc acquired using the SPI PC-MRA in a normal volunteer (Low-Venc=20cm/sec, High-Venc 80 cm/sec).

DISCUSSION: Implementation of this technique on a 3T scanner with an 8 channel coil improves SNR significantly. Blurring at 3T is worse compare to 1.5T but expansion of current 2D deblurring methods^(5,6) may improve image quality as well as allow longer ADC values to be used, increasing the SNR and efficiency of this method. Aliasing effects are less pronounced than with a quadrature head coil, due to the 8 channel coil's reduced FOV. Implementation of motion correction techniques should also improve the image quality, especially in the case of patient movement.

REFERENCES: 1. Irarrazabal P, Nishimura DG, Mag Res Med 1995 33(5): 656-662. 2. Koladja KV, Pipe JG. Abstract #2405(ISMRM 2005). 3. Lee AT, Pike GB, Pelc NJ, Mag Res Med. 1995 Jan;33(1):122-6. 4. Bernstein MA, King KF, Zhou XJ, Handbook of MRI Pulse Sequences. 5. Johnson KO, Pipe JG, Abstract #1541(ISMRM 2005) 6. Ahunbay E, Pipe JG. Mag Res Med. 2000 Sep;44(3):491-4.

ACKNOWLEDGMENTS: This work is supported by NIH grant 1R01HL/EB67821