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Theory: We are interested in reconstructing MR images that have been corrupted by motion which took place between the shots of a multi-shot 
acquisition. Images acquired in the Fourier domain, and which have been motion corrupted  are in general corrected by using two facts about Fourier 
transforms: the Fourier transform of a translated image is the original data with a phase shift, and the Fourier transform of a linearly transformed 
image is a linear transform of the Fourier transform of the original image. Two problems appear when trying to generalise to non-affine motions, or 
motion acquired in multiple shots. First, the Fourier data acquired at different times, i.e., k-space positions, is not consistent, which causes the ghosts. 
Secondly, no general statement holds for the Fourier transform of an image corrupted by nonrigid motion, in terms of transforms of the coordinates in 
the underlying space: we can't simply find a nonrigid motion of k-space corresponding to a nonrigid motion of image space. For this we develop a 
formalism which, given a description of the motion, allows reconstruction of an uncorrupted image (if adequately sampled). This method works for 
any type of motion, including nonlinear deformations and there are no specific requirements on the motion, such as a limitation to the phase encode 
(PE) direction. Noting that discrete samples of k-space are obtained at distinct times t=0…n_shots-1, (sampling matrix At) and  define 
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t = (F Fourier matrix), which is the image domain aliasing matrix. The essential point of our method is that any spatial transformation 

induces a linear transformation on the space of images, which we can write as a matrix ut. Expressing the uncorrupted image s0 and the ghosted 

image s as arrays we can write a general expression
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γ . This expresses the relationship between the motion corrupted and 

required motion free images as a linear transformation, suggesting s0 may be obtained from s by inversion of γ . Although the matrix γ  is in general 

singular, we can use a conjugate gradient least squares solver for the linear system, which converges even for a singular system, and requires only 
matrix-vector multiplications. An advantage of γ  is that multiplication by it can be implemented without ever building the matrix, but only using 

FFTs, image transformations, and subsampling. In this way, this method (in spirit comparable to [1] [4] ) can be implemented without excessive 
computational costs. 
Results: To test the method different types of rigid and nonrigid motions were simulated (pulsation, piecewise translations or rotations) and 
corrections applied either using knowledge of the motion or by minimising an autofocus energy. Figure 1a) shows checkerboards depicting a non-
uniform radial expansion applied to shots 2 and 3 with return to baseline in shots 1 and 4 of  a simulated 4 shot brain image. The motion is 

trr α+→ 1 , where r is the distance of a pixel to the center of the image, and 
tα a parameter controlling the deformation (here 5.0,0 3,24,1 == αα ). 

The corrupted  image is shown in Fig. 1-b) (left) and the correction applied with knowledge of the motion is shown in Fig. 1-c). Figures 2-a),b) 
show real data correction of a nodding head. The motion corrupted image 2-a) was created by mixing shots from the head in 8 different positions, 
from which the motion, (here affine was considered appropriate) was manually estimated. Note how the gyri have become visible in the corrected 
image 2-b). 
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Discussion: Unknown Motion. In practice the motion is not usually known, although various auto-
focus energies have been used to estimate motion histories from the acquired data (see e.g. [2]). 
Previous methods, however, have generally been limited by the use of inexact or limited motion 
correction algorithms (for example applying the inverse motion to sets of k-space lines acquired at 
single time points) so that ghosts are not eliminated completely, even when the correct motion history 
is applied. The current method does not suffer this limitation. We have also used an autofocus energy 
which measures the consistency between different (fully sampled) coil ‘views’ [3]. The rationale is 
that when the image is not ghosted, the coil views are more consistent. We write si for the image 
measured by the coil with sensitivity ci, and define the energy as the sum over all pairs of | si / ci – si /ci |. This energy is displayed in Fig. 3), for 
simulated images deformed as in Fig 1-a), where each line corresponds to varying the exponent 

tα  away from the correct value, for each  of the four 

shots.  
Conclusion. We have established a formula for describing motion in MR images that is applicable to arbitrary motions (and in fact also to arbitrary 
sampling patterns). This formalism allows correction of motion artifacts using standard optimisation strategies  and initial results are promising. This  
extends [3] by lifting the previous restriction to 1D components of motion. This framework is an advance on previous work in the complexity of the 
motion it can correct, and the computational efficiency of the algorithm.    
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