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Introduction 
 K-space implementations of spiral SENSE reconstructions have been demonstrated elsewhere at this meeting (1). Conjugate 
gradient (CG) reconstructions (1) have been demonstrated to provide identical image reconstruction performance as the standard 
image space solution approach (2). In this study, we demonstrate that the CG algorithm can be effectively replaced by a direct matrix 
inversion to solve the k-space matrix equation, without affecting the quality of the reconstructions. The motivation for this strategy is 
that coil sensitivity maps have very small extensions in k-space, and the inversion can be decomposed into a series of extremely small 
matrices which can be easily solved with efficient algorithms. The feasibility of this strategy is shown here with experimental data 
from a quality assurance phantom data acquired at 1.5T.  
 
Method and Materials 

In k-space, the spiral SESNE reconstruction can be described by a matrix equation BP=G, with B≡CHDC and G≡CHDm, 
consisting of the k-space sensitivity matrix C, the k-space data P, and acquired spiral data m. A 
diagonal matrix D is used for compensating for the non-uniform sampling density of the spiral 
trajectories. The direct inversion to this equation is P=AG, with AB=I. Accounting for small 
extensions of the k-space sensitivity maps, the nonzero elements in a row of the matrix A or B 
concentrate in a small region (Fig.1), and, thus, the matrix A can be determined row-by-row, i.e. 
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, for the kth row, for example. These sub-matrix equations can be further 
simplified and downsized four times due to the complex conjugate symmetry of the matrices A 
and B (i.e. AH=A and BH=B), and, thus, be efficiently and reliably solved with a regularized 
complex Cholesky decomposition (3).  

Phantom experiments were performed on a 1.5T whole body MRI scanner (GE Signa 
CV/i, Milwaukee, WI) using uniformly interleaved spirals and a 4-element coil array. Data 
collection parameters were 24 interleaves, 256×256 image matrix size, and 2872 pts/leaf. Fully 
sampled k-space data sets were also collected. The inversion was implemented on the 2× 
undersampled data set consisting of even spiral leaves. The k-space sensitivity map had a 
dimension of 12×12, and the size of the nonzero elements in a row of the matrix A was chosen 
as 10×10. The inversion method was programmed on UNIX C/C++.  

 
Results and Discussion 

Fig.2 illustrates the performance of the direct inversion method on the phantom data. Strong undersampling artifacts are 
evident in Fig.2a due to the size of the phantom (which completely filled the FOV). These artifacts have been successfully eliminated 
in Fig. 2b after the application of the proposed technique. Comparison of the proposed method with the image-space CG technique 
demonstrates a negligible 2.5% RMS error which once again confirms the effectiveness of the proposed approach (Fig 2c).  

The proposed direct inversion method has two major advantages over 
the CG iterative algorithm for k-space spiral SESNE. The matrix A only 
contains information about the sensitivity maps and the spiral trajectories, and 
thus can be pre-calculated. Because the sensitivity maps are slowly varying in 
space, this provides an opportunity to speed up reconstruction time by using 
the same sensitivity map, i.e., the matrix A, for neighboring slices of a 3D 
reconstruction. Furthermore, the computation complexity of the matrix A does 
not increase with the number of coils used in parallel imaging, making the 
method better suited for large scale parallel imaging than the conventional CG 
approach. The main drawback of the inversion method is that the 
reconstruction time could be long if one chooses to solve the sub-matrix 
equation for all grid points. Nevertheless, this run-time burden can be removed 
by performing Cholesky decompositions on representative grid points instead 
of the entire grid as it is done in approaches such as GRAPPA (4).  
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Fig.2:. Phantom images: (a) before and (b) after inversion, 
(c) reference image, and (d) difference between (b) & (c). All 
images are displayed in the same window/level. 
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Fig.1:. Schematic depiction of 
nonzero element distributions in the 
kth row of the matrix A and in the k’ th

row of matrix B. 
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