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Synopsis 
MR elastography (MRE) enables to map tissue elasticities in vivo. In dynamic MRE, the elastic coefficients are determined by means of local wavelengths of shear 
vibrations assuming that the material behaves linear elastic. Here, a method is proposed to measure simultaneously both linear and non-linear elastic tissue 
characteristics. The technique is based on accumulation of anharmonic vibrations using a balanced steady-state free precision (SSFP) experiment. 2D-wave patterns are 
captured and temporally filtered for decomposing higher harmonic oscillations. It is shown that the intensity ratio of the 1st and 2nd harmonic is the crucial experimental 
quantity for deriving a unique and sensitive non-linear elastic parameter that characterizes biological tissues. This non-linear shear modulus (E) was measured in ex 
vivo bovine liver, porcine kidney and porcine calf muscle with E = 20 ± 5, 8 ± 3 and 500 ± 50 kPa, respectively. The results indicate the sensitivity of E for 
distinguishing different tissue types. Our new approach opens the perspective to employ the non-linear shear modulus for an early detection of pathological changes in 
living tissue. 
Introduction 
In MR elastography (MRE), the lengths of shear waves are used as a measure for regional stiffness variations [1]. This approach employs pure harmonic tissue 
oscillations for characterizing the elasticity of materials. If anharmonic vibrations can be measured by non-linear MRE the very specific non-linear elastic behavior of 
the material is observable [2]. Thereby, the presence of higher harmonic vibrations is the crucial indicator for estimating the non-linearity of the material. For a 
quantitative analysis strain wave fields have to be measured along different directions, since the intensity of those higher harmonic vibrations depends on both non-
linear elastic coefficients and strain components. In the following a simple theoretical and practical approach to measure a non-linear shear modulus by MRE is 
demonstrated, which is based on the simulation on experimental 1D-wave profiles.  
Theory and Methods 
The non-linear quadratic extension of Hooke’s law is given by eq.1 (i,j,k = x,y,z) [3] using the notation of σ, ε, CL and CN for the stress, strain, linear and non-linear 
elasticity tensors, respectively. Plugging eq.1 into the wave equation (eq.2) yields the non-linear equation of motion of a displacement component uz(x,t), which is 
coupled to the displacement component ux(x,t) (see eq. 3). The two elastic coefficients µ and E denote the tensor components µ = CL

xzxz ; E = CN
xzxzxx. 

 
Thus, for an evaluation of E it is sufficient to simulate the non-linear wave profile uz(x,t) incorporating the experimentally determined profile ux(x,t). Therefore uz(x,y,t) 
and ux(x,y,t) were measured by 2D non-linear MRE in order to extract vertical profiles in A-P direction (defined as our x-axis). Experiments were performed on ex vivo 
bovine liver, porcine kidney and porcine calf muscle using a balanced SSFP acquisition technique with one bipolar gradient before and after the readout gradient 
(gradient frequency was 108 (liver, muscle) and 200 Hz (kidney)). The wave images were captured at 20 different times and Fourier transformed. The resulting spectral 
wave patterns were simulated using a finite difference scheme that allows 1D calculations of non-linear wave profiles corresponding to eq.3. The calculated profiles 
were fitted to the experimental wave profiles uz(x,t) using ux(x,t), the previously determined linear shear modulus µ and E, as the variable parameter. 
 
Results: Fig. 1 shows uz(x,y) after spectral decomposition in 
fundamental (A) and 2nd harmonic oscillation (B) of bovine liver (I), 
porcine kidney (II) and porcine muscle (III). Additionally ux(x,y) is 
shown. The amplitude ratio of 2nd and 1st harmonic was found to be 
highest for porcine muscle and lowest for porcine kidney. 
Correspondingly, the simulation of uz(x)-wave profiles using eq.3 
yielded a non-linear shear modulus E that increases in the same order as 
the amplitude ratios of the specimen (Tab. 1). 

Discussion and Conclusion:Using new SSFP-MRE the measurement of 
the 1st and 2nd harmonic vibrations in ex vivo tissue specimens was 
simultaneously achieved with temporal resolution and excellent SNR. 
1D-calculations of non-linear wave profiles quantified the observation 
that muscle tissue shows stronger deviations from the linear elastic 
behavior than liver and kidney. It was demonstrated that the non-linear 
shear modulus E is a highly sensitive elastic parameter for characterizing 
different types of biological tissues. Further non-linear MRE studies on 
pathologic tissue samples may reveal sensitive differences of the elastic 
behavior between healthy and diseased tissue. 

 µ [kPa] E  [kPa] 
bovine liver 2.3 ± 0.3 20 ± 5 

porcine kidney 4.8 ± 0.5 8 ± 3 
porcine calf muscle 19.0 ± 0.8 500 ± 50 

Tab. 1: Linear shear modulus µ and non-linear shear modulus E of 
ex vivo bovine liver, porcine kidney and porcine calf muscle. µ is 
derived from wavelengths estimation of the 1st harmonic in uz(x,y) 
(Fig.1, col. A). For derivation of E see text. 
 

x15

x80

x40

-100 -80 -60 -40 -20 0 20 40 60 80 100

x

y
z

III

II

I

CBA

- - - - -

µm

x

y
z

III

II

I

CBA

x15

x80

x40

-100 -80 -60 -40 -20 0 20 40 60 80 100

x

y
z

III

II

I

CBA

- - - - -

µm

x

y
z

III

II

I

CBA

 
Fig. 1: Non-linear 2D MRE experiments. I: bovine liver, excitation frequency fe= 46 Hz, 
dim[mm]: 60x110; II: porcine kidney, fe= 74 Hz, dim[mm]: 42x90; III: porcine calf 
muscle, fe= 46 Hz, dim[mm]: 60x96. A: 1st and B: 2nd harmonic of uz(x,y); (wave images of 
B were scaled with the numbers given on the images); C: ux(x,y) 
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