
Using Perceptual Difference Model (PDM) to Optimize Regularization Parameters in Parallel Imaging 
 

D. Huo1, D. Xu2, Z-P. Liang2, D. L. Wilson1,3 
1Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States, 2Electrical and Computer Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL, United States, 3Radiology, University Hospitals of Cleveland, Cleveland, Ohio, United States 

INTRODUCTION 
We are developing a quantitative method for evaluating image quality, the perceptual difference model (PDM) and using it to develop and optimize fast parallel image 
reconstruction techniques. PDM is a computerized human vision model that calculates the visual difference between a “test image” and a “gold standard image,” which 
in our parallel imaging experiments correspond to fast images obtained with k-space sub-sampling and slow images obtained with full sampling, respectively. PDM has 
been shown to correlate well with human observers in a variety of MR experiments including spiral imaging and keyhole imaging [1, 2]. It enables one to evaluate the 
1000’s of images that are easily generated in reconstruction experiments.  

Parallel MR imaging has been widely used to improve image quality and/or shorten acquisition time. SENSE, SMASH, and other hybrid methods reconstruct the image 
from the arrayed coil data sets. For SENSE, the reconstruction process can be seen as a problem of solving an over-determined large linear function, and the ill-
conditioning of the sensitivity map will magnify the small disturbance of the acquired data and result in a bad reconstructed image. King and Angelos [3] proposed to 
solve this problem utilizing Tikhonov regularization. The success of regularization depends upon the parameter selection method [4, 5], and we are investigating a 
promising method using PDM. 

METHODS 
Given the estimated sensitivity map S, measured data d, prior image ρr and regularization parameter λ, Tikhonov regularization can be expressed as  
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The proposed algorithm is to choose λ in a spatially dependent fashion, considering the conditioning of all the equations. First, λ is set to [λmin, λmax], and then is 
selected point-by-point for in a spatially-adaptive manner. More specifically, set λ(x) to be a linear function of the local condition number of S.  
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σ is the singular value of S. K and ε are user defined constant, and they are very important to the reconstructed image quality. We will apply PDM to determine the 
optimal K and ε.   

EXPERIMENTS 
A healthy subject’s head images acquired with a four-element head coil are 
reconstructed with the above method. Fully sampled data were used to construct 
a “gold standard” image (Figure 1a), and one quarter of the sampled data (R = 4) 
were used to reconstruct test images. PDM scores determined the visual 
difference between the two, with a high PDM indicating a poor test image that is 
visually much different than the gold standard.   

RESULTS AND DISCUSSION 
Images regularized with different K and ε values are shown in Figure 1. PDM is 
a smooth function of these parameters, and we can easily determine the best 
point at A (K = 5.91, ε = 1.04) in Figure 1(b). The image at point B is clearly 
inferior to the one at A. In other experiments (not shown), PDM correlated well 
(R=0.95) with human evaluation of parallel image reconstructions. Because of 
the smooth dependence of PDM upon reconstruction parameters, we have 
successfully used PDM as a criterion in automated optimization algorithms.  

Results show that PDM can be very helpful for selecting free parameters in 
reconstruction algorithms. Fast parallel imaging is especially amendable because 
it is relatively easy to design experiments using a full k-space acquisition as the 
gold standard. Currently, we are using PDM to evaluate a variety of fast MR 
reconstruction techniques in experiments where we generate 1000’s of test 
images. Without a numerical measure of image quality such as PDM, it would be 
impossible to design such experiments.  
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Figure 1. Using PDM to optimize parameters K and ε. The gold standard 
image in (a) is compared to test images such as those in (c) and (d). The surface 
plot in (b) shows the normalized PDM score changes as a function of K and ε. 
Point A (K = 5.91, ε = 1.04) is at the minimum and gives the image in (c). 
Image (d) corresponds to point B (K =15, ε = 1).   
 
 
 
 

0.5

1.0
E0.20

1.5

0.24

0.28

0.32

5 2.010 15 20
K

A 

B 

Normalized PDM Score 

Proc. Intl. Soc. Mag. Reson. Med. 13 (2005) 2455


