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Can Maximum Likelihood Estimation Outperform Matrix Inversion in Parallel Image Reconstruction? 
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Introduction  A close correspondence has recently been reported between parallel magnetic resonance imaging and multiple-input multiple-output 
(MIMO) wireless communications (1). Both fields utilize measured “sensitivity” information in multiple detectors to unfold aliased data. However, 
in MIMO, maximum likelihood estimation (MLE) has been shown to outperform matrix inversion techniques for signal decoding (2). One might 
speculate, therefore, that MLE might also yield improved performance for parallel MRI, in particular if the reconstructed signal data assume finite bit 
precision. This study addresses this question by first outlining a general theory of MLE and also the special conditions under which MLE and 
encoding matrix inversion become mathematically equivalent. A practical adaptation of MLE for parallel image reconstruction with finite bit 
precision is then described. Lastly, the results of numerical simulations comparing MLE and matrix inversion are presented and discussed. 
  

Theory  An MLE algorithm selects a solution vector x̂  (out of an exhaustive set of candidate x’s) which maximizes the conditional probability of 
the observation vector y given x. 

 ( ) ( ) ( )
  all possible x's

ˆ arg max  ;   where ;p f
∈

= = +
y x

x
x y x y x n  [1] 

In typical cases for both parallel MRI and MIMO, ( )f ⋅ is linear and invertible such that part of Eq. [1] can be written in matrix form,  

 ( );   ;identity=-1y = Fx + n F F I  [2] 

and n’s are noise of normal distribution with covariance matrix Λ.  However, parallel imaging differs from MIMO in that, in parallel imaging, x 
assumes continuous values representing the underlying magnetization density, whereas in MIMO, x takes discrete values from a finite alphabet. For 
the continuous case represented by the parallel imaging reconstruction problem, the MLE solution mathematically coincides with the least-squares 
“pseudoinverse” solution given by linear algebra (3), 

 ( )ˆ ,   where 
-1-1 -1 T -1 T -1x = F y F = F Λ F F Λ  [3] 

On the other hand, the discreteness of x in MIMO allows “non-linear” decoding using MLE, and this stochastic approach outperforms the linear 
algebraic least-squares approach, which is sometimes referred to in this context as “zero-forcing”(1). This study investigates whether the MLE 

approach can also outperform the matrix least-squares approach in parallel MRI when the estimated x̂  assumes finite bit precision. 
 
Method  The Viterbi algorithm (4), a computationally efficient MLE decoder for convolutional codes in wireless system, was adapted to perform 
MLE for parallel imaging. The encoding methods for convolutional codes and MR signal data are schematically analogous since k-space data can be 
expressed in terms of the convolution between the Fourier transformations of the spin density and of the coil sensitivities. Low-resolution coil 
sensitivities (central 8 Fourier coefficients) were used in order to reduce the complexity of the Viterbi algorithm, which scales exponentially with the 

length of the convolutional kernel. By initially quantizing x̂  to a limited bit precision, a coarse MLE solution can be obtained after the first iteration. 
Successive iterations add bit precision to the MLE solution by refining the quantization levels. Each iteration adds ½ bit of resolution to the MLE 
solution. A total of 24 iterations were required to obtain the 12-bit precision that is typical in MR images. 
 

Signal data were simulated using a coil array of 8 rectangular elements (400x60mm each), covering a total area of 400x400mm (also the field of view 
of the image). Various levels of Gaussian noise were added. Parallel image reconstructions were performed from datasets with various acceleration 
factors, using both the MLE algorithm described above and the standard SENSE least-squares pseudo-inverse reconstruction (5). Total error power 
was plotted as a function of bit precision. 
 

Results 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion This work tests the potential benefit of MLE for parallel image reconstructions of finite bit precision. Preliminary results suggest that 
assuming a solution of moderate but finite bit precision gives no apparent advantage over the linear least-squares approach. In Fig 1, numerical 
simulations confirm theoretical expectations that, in the limit of infinite bit resolution, the two approaches converge. The error plots in Fig. 2 and 3 
show that total error power does cease to decrease at some bit level, suggesting that the baseline SNR ultimately dictates the realizable bit precision 
of an image. One might imagine only very specialized circumstances with limited precision requirements for which the MLE algorithm might 
provide a specific SNR advantage. That said, the stochastic approach in MLE does offer new generalities in accommodating different noise behaviors 
(e.g. non-Gaussian), a priori information, and non-linear solutions for future developments of parallel imaging. 
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