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Introduction 
Recently, parallel imaging techniques for accelerated volume-selective excitation with transmit-arrays have been proposed [1]. To date, these 
methods have all corresponded to image space based receive parallel imaging methods. One central problem in these methods is the accurate 
determination of the transmit sensitivities of the individual coils. This is especially difficult at high fields where the transmit field may differ 
significantly from the receive fields. Determination of the individual RF waveforms from the transmit sensitivities is an inverse problem, which is not 
easy to solve. In this abstract we show that autocalibration techniques such as GRAPPA [2] can be used to improve the performance of accelerated 
volume-selective excitation without the need to explicitly determine transmit sensitivities. 
Theory 
Volume-selective excitation is achieved by combining a modulated gradient with the application of an RF waveform corresponding to the spatial 
frequency spectrum of the desired excitation profile. Parallel imaging techniques achieve acceleration by using an undersampled excitation trajectory 
with a transmit array while appropriately modulating the individual RF waveforms to achieve the same excitation profile. In Transmit-GRAPPA the 
missing transmit segments are expressed as linear combinations of the pulse along one single segment. The output pulse for each coil is then given by 
the linear combination of these different segments expressed along the output segment.  
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Materials and Methods 
Finding the desired RF waveform to play out simultaneously in the C transmit coils along the n = 1 
excitation k-space trajectory for full excitation can then be found using the following algorithm: 
• Transmit with each coil individually along segment n = 1 and receive data )(, ks dc

ρ1  
simultaneously with all receive coils along the same k- / κ-space trajectory used for excitation 
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using the same p and q ranges as in eqn. 4. The signal )(ˆ1 ksd
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 acquired after accelerated excitation 

can be shown to be the same signal as produced by the original )(κσ
ρ

 without acceleration. 
Results 
Using the autocalibration approach, only a few k-space lines on the receive side have to be acquired in the calibration phase. A simulation of this is 
shown in Figure 1, which shows the low resolution images used for calibration for an acceleration factor of 2 using an 8 element birdcage-like array 
for transmission. In this case, images of size 32x32 were used for determination of the linear combination coefficients. As can be seen in Fig.2, the 
resulting profile corresponds quite well to the desired circular-shaped profile.  
Conclusion  
A simple method for acceleration of multidimensional RF pulses using parallel transmission has been developed based on the GRAPPA formalism. 
Using this concept, it is possible to derive the RF pulses for the individual coils using an autocalibrated approach, so that no absolute quantification 
of the transmit profiles of the individual coils is required. All that is required for a C coil setup is C acquisitions in which a single segment is 
transmitted with a single coil and received with all coils followed by AF-1 acquisitions in which the other segments are transmitted and received in 
all coils. Since all of these acquisitions can be low resolution experiments, this process should be fast and can therefore easily be repeated for 
different slice locations or pulse shapes. This should be especially useful at high field strengths where the profiles of the transmit fields are 
significantly different than the receive fields and may be more sensitive to loading changes during the experiment.  
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Figure 1: Real part of the object modulation from 
the odd (a) and even (b) lines of the excitation 
trajectory used for calibration. 

     

Figure 2: Simulation object with homogeneous (a) 
and accelerated volume (b) excitation. 
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