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Introduction  
 Variable density k-space sampling is sometimes used in parallel imaging to reduce aliased energy at low spatial frequencies (1) or to allow self-calibration using 
Nyquist-sampled data around the center of k-space (2).  Variable density data can be reconstructed using SPACE RIP (1), Generalized SMASH (3), Generalized 
SENSE (4), GRAPPA (5) or by unwrapping only a uniformly undersampled subset, transforming back to k-space, and combining it with the Nyquist-sampled data (6).  
A method developed by Madore  (7) for SENSE with self-calibration places the measured data at the correct sampling intervals in k-space and then fills in missing data 
with zeros.  The data are multiplied by the appropriate density compensation factors for each k-space region.  Fourier transformation is then followed by Cartesian 
SENSE unwrapping (8) assuming a reduction factor appropriate for the undersampled (outer) part of k-space.  Madore’s method has the advantage of being very 
computationally efficient but can result in ringing artifacts due to the abrupt transition in k-space density. 
Methods  
 The image quality of Madore’s method can be improved with almost no reconstruction time penalty by a very simple extension.  Consider a 1D example where 
the outer part of k-space has threefold undersampling and the center of k-space is Nyquist-sampled (Fig. 1, top).  By appropriately choosing the sampling pattern, we 
can split the data into two interleaving sets, a high resolution set RH and a low resolution set RL (Fig. 1, center and bottom).  Because of the uniform spacing of both the 
samples in RH and the “holes” in RL, both data sets can be reconstructed using uniform-density Cartesian SENSE.  If RH and RL are multiplied by appropriate k-space 
windows H and L that compensate for the sampling density, the two unwrapped images can be added. The final reconstructed image I is 
 { [ ]}I S FT H RH L RL= × + ×  [1] 

where FT[ ] and S{ } represent 1D Fourier transform and 1D SENSE unwrapping operators, respectively.  For example consider the k-space window 
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with 
 3 2H L= − ×  [3] 
 For this choice of L the reconstruction is equivalent to Madore’s method.  However we can smooth the abrupt transitions in H and L to reduce the ringing.  Consider 
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with H given by Eq. [3] and where c and w represent the radius of the Nyquist-sampled region and the transition width respectively. L and H are shown in Fig. 2 for c = 
32, w = 8.  The transition width w can be chosen to trade ringing for aliasing:  increasing w decreases ringing but increases low frequency aliasing.  Note that if a sharp 
transition is used (w = 0), then Eq. [4] becomes equivalent to Eq. [2].  It can be shown that this method requires the approximation that the SENSE unwrapping operator 
commutes with the convolution operator in image space.  This approximation is also used in uniform-density SENSE reconstructions when k-space windowing is used 
to reduce Gibbs ringing or when low spatial resolution sensitivity data are used (9). 
Results  
 Scan data were acquired on a commercial 1.5T scanner (GE Healthcare, Milwaukee, WI) using an eight-channel head coil (MRI Devices, Gainseville, FL).  Fully 
sampled data  (256x256 matrix) were decimated to give three-fold undersampling in the outer part of k-space with 64 Nyquist-sampled center lines (128 acquired ky 
lines, net reduction factor two).  The Nyquist-sampled k-space lines were used to generate a low resolution coil sensitivity calibration.  The data were then reconstructed 
using Eqs. [1], [3] and [4].  Figure 3 shows the results for two transition widths (w = 0, w = 8), demonstrating the reduction in ringing as the transition width increases.  
This method can be extended to reconstruct partial Fourier data by appropriately modifying H to overweight data conjugate to the additional missing ky lines.  
Conclusions 
 Variable density Cartesian SENSE data can be efficiently reconstructed by extending the method of Madore to reduce ringing artifacts introduced by the sharp k-
space density changes.  k-Space sampling is modified to allow the data to be segregated into interleaving low and high frequency subsets.  Each subset is multiplied by 
a density compensation window that also smoothes the sampling density transitions.  The data are added and reconstructed using the conventional uniform-density 
SENSE algorithm.  The reconstruction time is almost the same as for uniformly-sampled data. 
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Fig. 1. Top: 28 samples of a variable density ky data set with threefold 
undersampling and eight Nyquist-sampled center points.  Center:  high 
resolution component RH, Bottom:  low resolution component RL.  X 
and 0 represent measured and unmeasured points respectively. 
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Fig. 2.  H (left) and L (right) computed 
using Eqs. [3] and [4] for 256 ky samples 
with c = 32, w = 8. 
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Fig. 3.  Variable density scan with threefold 
undersampling and 64 center lines (c = 32) 
reconstructed with w = 0 (left), and w = 8 (right). 
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