J-J. Hsu ${ }^{1}$, G. H. Glover ${ }^{1}$
${ }^{1}$ Lucas MRS/I Center, Stanford University School of Medicine, Stanford, California, United States

Introduction Mapping the longitudinal relaxation time $\left(T_{1}\right)$ usually involves curve fitting the time constant of the relaxation equation $M_{z}(t)=M_{0} \exp \left(-t / T_{1}\right)+M_{\mathrm{eq}}\left[1-\exp \left(-t / T_{1}\right)\right]$, where M_{0} and M_{eq} are the initial and the equilibrium magnetization, respectively. Conventionally, this curve is sampled by repeated use of the inversion recovery ($180^{\circ}-\tau-90^{\circ} ; M_{0}=-M_{\mathrm{eq}}$) or the saturation recovery $\left(90^{\circ}-\tau-90^{\circ} ; M_{0}=0\right)$ pulse sequence. The drawbacks are that for both of the pulse sequences the flip angle of the RF pulses are required to be at specific values and $M_{\text {eq }}$ has to be measured, which takes extra time and may introduce error. In particular, these methods are time consuming because (i) each repetition obtains only one sample point and (ii) a long delay between repetitions is required to allow full recovery of the magnetization. In this work, we develop a rapid T_{1} mapping method which transforms the fitting curve to a decay exponential and does not have these drawbacks.

Methods Consider a simple pulse sequence which has two RF pulses of flip angle α. The two pulses are separated by evolution time τ. The NMR induction signal after the first and the second pulse is proportional to the volume integral of M_{0} and $M_{0} \exp \left(-\tau / T_{1}\right) \cos \alpha$ $+M_{\text {eq }}\left[1-\exp \left(-\tau / T_{1}\right)\right]$, respectively. After a delay D for magnetization recovery, a 180° pulse is executed to invert the magnetization so the initial magnetization becomes $-M_{0}$. Then the two-pulse sequence is repeated; the signals are subtracted from those of the first two-pulse sequence. After dividing the signal of the second α-pulse by $\cos \alpha$, the final signals of the two α-pulses are proportional to $2 M_{0}$ and $2 M_{0} \exp \left(-\tau / T_{1}\right)$, respectively. Thus the curve for data fitting is transformed from the conventional recovery exponential to a decay exponential; the latter can be easily and directly fitted with semi-log coordinates. Note that the $M_{\text {eq }}$ dependence is eliminated so measuring M_{eq} is not required. If the inversion RF pulse does not turn the magnetization to exactly $-M_{0}$, the factor 2 in the final signals becomes $(1+\beta)$, where $0<\beta<1$. Since T_{1} is the quantity of interest, the value of $(1+\beta)$ can be arbitrary (although $\beta=1$ has higher signal intensity). Thus the T_{1} fitting will not be affected by the accuracy of the inversion pulse. For the same reason, a fully recovered magnetization is not necessary so the recovery delay D can be shortened for time-saving. The pulse sequence can be expanded to have $q \alpha$-pulses to obtain q samples for the curve fitting in one scan. The general theory is given in Ref. [1]; it is shown that the results agree with that by the inversion-recovery method. In Ref. [1], the k-space is sampled by a low-flip-angle pulse-train method. In this work, the k-space is sampled by a single-shot pulse sequence so a larger value of α can be used for better signal-tonoise; a spiral pulse sequence [2] was employed for this purpose. In addition, the original method is extended to multi-slice acquisition by scheduling the acquisition of each slice evenly during an evolution time τ (i.e., the number of slices is τ-dependent). The experiment was performed at 1.5 T . The actual flip angle was obtained from a map constructed by solving a trigonometry relation between the intensity of the images from a single α-pulse and a single 2α-pulse. The number of curve-fitting samples was $q=3$; the samples were equally spaced by τ.
Results and Discussion Figure 1 presents the anatomic image and the T_{1} map of the brain of a healthy volunteer. The variation of the contrast in the T_{1} map agrees with the distribution of the gray and write matter shown in the anatomic image. They also capture the well-known feature that the T_{1} value of the gray matter is a few hundred ms longer than that of the white matter. Sample T_{1} values (averaging over nine pixels) are given in the map, including the gray matter 1090 ms , the write matter 680 ms , and the cerebrospinal fluid (CSF) 3210 ms . The data for the entire six slices were acquired in less than 2.5 s . In summary, the present method can successfully obtain data for T_{1} mapping in a very short period of time with reasonable accuracy.
Acknowledgement This work is supported in part by NIH RR09784 and the Richard M. Lucas Foundation.
References [1] J-J Hsu and IJ Lowe, J Magn Reson 169, 270 (2004). [2] GH Glover and S Lai, Magn Reson Med 39, 361 (1998).

Figure 1 (a) Anatomic image by fast-spin-echo MRI (size $256 \times 256, T_{\mathrm{E}}=68 \mathrm{~ms}, T_{\mathrm{R}}=4 \mathrm{~s}$). (b) T_{1} map by the present $\operatorname{method}($ size $128 \times 128, \alpha=$ $30^{\circ}, \tau=350 \mathrm{~ms}, D=350 \mathrm{~ms}$, $T_{\mathrm{E}}=6 \mathrm{~ms}$). The sample T_{1} values are given in ms. In (a) and (b), the slice thickness is 5 mm , the gap between slices 5 mm , and the field of view 24 cm . The entire T_{1} map of six slices was taken with one scan in $\sim 2.5 \mathrm{~s}$.

