Theoretical Solutions of Transient Spin Dynamicsin Coherent SSFP

S-1. Urayamat, L. Axel?, J. Okamoto®, T. Azuma®, S. Tsutsumi®, N. Fukuyamat
*Human Brain Research Center, Kyoto University, Kyoto, Kyoto, Japan, 2Dept. Radiology, New Y ork University, New York, NY, United States, *MR Business
Management Group, Siemens-Asahi Medical Technologies Ltd., Shinagawa-ku, Tokyo, Japan, “Dept. Medical Simulation Engineering, Institute for Frontier Medical
Sciences, Kyoto University, Kyoto, Kyoto, Japan, *Dept. Medical Simulation Engineering, Institute for Frontier Mecical Sciences, Kyoto University, Kyoto, Kyoto,
Japan

Introduction Coherent SSFP imaging technique is being utilized for both anatomical and dynamic imaging applications, such as myocardial tagging or perfusion
imaging. Therefore, many studies have been performed of theoretical and experimental analysis of transient spin dynamics in SSFP imaging. The transient response of
the magnetization from the initial to the steady state is known to evolve along a spira orbit in (Mx, My, Mz) coordinates; it can be obtained by calculating the
eigenval ues and eigenvectors of a 3x3 matrix [1]. However, this matrix is too complex to solve analytically, so that solutions have not been previoudly presented. In this
study, we show theoretical solutions of the eigenvalues and eigenvectors, by neglecting terms second order or higher in TR/T1 and TR/T2.
Theory According to[1], the 3x3 matrix T isgiven by eq.1, where R, (¢) isthe ¢ - rotation matrix about the axis n@n\ 1) ny=(010) , n;=(0,01),
is the flip angle, f§ is a precession angle during TR, and E is a diagonal matrix whose diagonal components are (ez e, el) where ¢ = exp( TR/Tl) and
&= exp( TR/T2) respectively. Two parameters 6 and a= (ax,ay az) are given by eq.2. Then, the orbit of the transient response just after the RF pulseis given by
eq.3, where m(t) is the magnetization vector at time=t, mg is the magnetization at the steady state, u; are the coefficients determined with the initial state, and
Aivi (i=1,2,3) are the i-th eigenvalues and eigenvectors of T, respectively. Theoretical analysis of the transient response is possible when mg, 4 and v; are
solved analytically.

The resulting solutions are given by eq.4-6. The proof is omitted here because of the limited space. As shown in eg.4 and 6, two of three eigenvalues and
eigenvectors are complex conjugate. Each elgenvector is the sum of a unit vector and a small orthogonal vector containing (el - e2) and any pair of the unit vectorsare
also orthogonal. Then, the orbit during the transient time is given by eq.7, where ¢, isthe phase of A, and vy, vy arethe real and imaginary components of
Vo, . Considering the eigenvector orthogonal relationships, the orbit is a spiral whose axis, rotating angle and shortening ratios in the axis and radial directionsare vq,
with vq,theaxis vy isparald to mg if a, issufficiently lager than the coefficient of the second termin
eq.5, but they are orthogonal if a,=0,i.e. f=0. Since these equations are derived for a sequence with RF of only +¢ flip angle, those for the generally used
sequence with RF of o canbe obtained by replacing £ ineg.2-6 with S+ .

Validation Comparison between the numerically calculated values of 4;, mg and v; from eq.4-6 and those from Ty are carried out under the conditions of
10°< r<90° (10°-step), 0°<F<360° (10°-step), 2msec < TR < 5msec (1Imsec-step), T1=250msec and T2=50msec. Since terms of the second order or higher in
TR/T1 and TR/T2 are neglected in the approximation, T1 and T2 values of fat are selected as the shortest ones considered. Results shown in table.1 demonstrate the high
accuracy obtained. In the presentation, we will present validation results with a phantom study which also demonstrates high coincidence with the solutions.

Conclusion Theoretical equations of the transient spin response in approaching SSFP are presented and the numerical validation demonstrates their high accuracy.
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