Designing Long-T₂ and Combination Long-T₂/Fat Suppression Pulses for Ultra-short Echo Time (UTE) Imaging

P. E. Larson¹, D. G. Nishimura¹, J. M. Pauly¹

¹Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction:

Ultra-short echo time (UTE) imaging has recently become of interest for possible clinical applications [1,2]. Long- T_2 species dominate UTE images if they are not suppressed. We introduce a new set of long- T_2 suppression pulses designed with the Shinnar-Le Roux (SLR) pulse design algorithm [3]. They are low-amplitude, long-duration RF pulses that have improved off-resonance bandwidths over previous hard long- T_2 suppression pulses [4]. We also have designed a long- T_2 suppression pulse that includes fat-saturation.

Theory:

We solved the Bloch equation for M_Z at conclusion of a RF pulse, $\omega_I(t)$. We included T_2 decay but not T_1 decay and assumed T_2 is much shorter than the pulse duration to obtain the following result:

$$M_{Z}(T_{2}) \cong 1 - T_{2} \int_{0}^{T} |\alpha_{1}(t)|^{2} dt = 1 - T_{2} \int_{-\infty}^{\infty} |\Omega_{1}(f)|^{2} df$$
(1)

This result shows that short- T_2 attenuation is proportional to the integrated squared spectrum of an RF pulse.

Methods:

The SLR pulse design algorithm is useful for designing $long-T_2$ suppression pulses because it allows us to put most of the pulse energy in the suppression band. Equation (1) tells us that this limits short- T_2 attenuation while maximizing bandwidth. The algorithm also creates the minimum power RF pulse for a given profile [3]. The pulses are maximum phase to assist the suppression and shrink the transition widths. We also used the complex remez algorithm to design pulses with fat-saturation and long- T_2 suppression [5]. The RF pulses used are shown in figure 1 with different time scales. Analysis was done using a full Bloch equation simulation and experiments were done on a GE Excite 1.5T scanner.

Results:

Figure 2 shows the simulated spectral and T_2 profiles of the four long- T_2 suppression pulses from figure 1. The 11 ms time-bandwidth (TBW) 2.0 SLR pulse and the 5 ms hard pulse have identical T2 profiles, but the SLR pulse has a flatter suppression band. The 11 ms TBW 2.4 SLR pulse has a wider bandwidth than both so the short- T_2 s are more attenuated. The 20 ms long- T_2 /fat suppression pulse includes a spectral band to saturate fat. This additionally attenuates the M_Z of short- T_2 s an amount proportional to the width of the extra suppression band.

Figure 3 shows in vivo UTE images of the left ankle with (**b**) and without (**a**) suppression pulses. A 5" surface coil was used with TE = $80 \ \mu$ s, TR = $500 \ ms$, 5 mm slice thickness, and 3:12 per image. The tendons (arrows) not obscured by other tissues when the long-T₂/fat suppression pulse was used.

Conclusion:

We have created long- T_2 suppression pulses with improved spectral profiles, as well as designed a long- T_2 and fat suppression pulse for UTE imaging applications. Since the short- T_2 attenuation is proportional to bandwidth, the application of these pulses is limited. The pulses shown can image T_2 s less than a few ms have approximately a ± 1 ppm suppression bandwidth. Using RF long- T_2 suppression pulses is advantageous over image subtraction because it has no artifacts from motion or eddy currents.

References:

- [1] Gatehouse PD, *et al*, *Clin Radiology* 58: 1-19, 2003.
- [2] Robson, MD, et al, Clin Radiology 59:727-735, 2004.
- [3] Pauly JM, *et al, IEEE T Med Imaging* 10(1): 53-65, 1991.
- [4] Pauly JM, et al, Proc. 12th SMRM, p. 145, 1992.
- [5] Karam LJ, et al, IEEE T Circuits-II, 42(3):207-216, 1995.

Figure 1: Plots of four long- T_2 suppression pulses. The 20 ms long- T_2 /fat suppression pulse is complex.

Figure 3: (a) UTE left ankle image with no suppression. (b) Using 20 ms long- T_2 /fat suppression pulse. With suppression, the tendons (arrows) are easy distinguishable. The plastic boot holding the ankle is also visible.