
 

Figure 1. Digital phantom (40 frames, each frame is 128-by-128) to simulate
heart and respiratory motions. a: Phantom with dynamic structures. b: k-
Space sampling (R=1.83). c: Direct Fourier inversion of reduced data. 
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Figure 3. Reconstruction of phantom 
with simulated respiratory motion. 
a: Nonadaptive reconstruction 
(RMSE=0.117) b: Adaptive 
reconstruction (RMSE=0.017). c,d:
Error images corresponding to (a) and 
(b), respectively. Nonadaptive 
method, Noquist-type technique was
not able to resolve aliased pixels 
where temporal spectra were 
overlapped. Adaptive choice of η
leads to acceptable results. 
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Figure 2. Reconstruction in absence 
of respiratory motion (without motion 
#6 in Fig. 1a). a: Reconstructed image 
(RMSE=2e-4). The central part was
assumed dynamic (η=0) and the rest is 
static (η=500). b: Image reconstructed 
from noisy data. 
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Introduction: Reducing amount of MRI data required for image reconstruction is an important strategy to increase spatial/temporal resolution and volume coverage in 
many dynamic MRI applications. A variety of different methods for acquisition and reconstruction of reduced datasets were proposed [1-4]. Most of them rely on 
explicit [1] or implicit [2-4] temporal filtering and special acquisition strategies to optimally use the available temporal bandwidth. Each individual method has its own 
advantages and limitations defined by a priori assumptions about temporal dynamics of the object and filters used for reconstruction. If assumptions are violated, 
artifacts arise that may lead to incorrect results [5]. 

In this paper, we describe a general framework for reconstruction of dynamic MRI series from reduced data based on Tikhonov regularization [6]. The framework 
is flexible to accommodate many linear and nonlinear spatial and temporal filters in the form of Tikhonov regularization terms. Additionally, we present two new 
methods for reconstruction of dynamic MRI data based on the described framework. 

Theory: We consider reconstruction of dynamic MRI data as the following 
optimization problem: 
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where n≡ ⊗E I E , ⊗  is the Kronecker product, nI  is the n n×  identity matrix, n is 

the number of time frames, E is the encoding matrix composed of Fourier terms, or of 
coil sensitivities weighted Fourier terms for parallel MRI (P-MRI). Vectors f  and m  

contain solution and data points, respectively. ( )iS f  and ( )iT f  are regularizing terms 

having effects of spatial and temporal filtering, respectively, and ,i iλ η  are 

regularization parameters to balance goodness of data fit and filtering strengths. The 
formulation was also studied in electrocardiography [8]. 

When the regularizing terms have a form of L2 norm, solution to (1) could be 
obtained as the result of least squares estimation: 
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where Ψ  is chosen to account for noise levels and correlations in coil channels for 
SNR-optimal reconstruction, and Si and Ti are spatial and temporal filtering matrices, 
correspondingly. One example of a spatial filter is the 0th order filter given by Si=I, and 
its adaptive P-MRI version [7]. In our methods, we use the 1st order temporal filter: 
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where matrix L is the first derivative operator in time dimension. The filter design 
could be based on a priori assumptions on temporal dynamics of the object. 
Additionally, filtering effects could be tuned using adaptive regularization parameters. 
Methods: Next, we describe two new methods for reconstruction of dynamic series 
based on the 1st order regularization (3). In all examples, minimization of (2) was done 
by iterative Conjugate Gradient algorithm. Sampling pattern and numerical phantom 
simulating dynamics of cardiac MRI were identical to the ones used in [3] (Fig. 1). 

The first, nonadaptive method assumes that certain object parts are static while the 
rest of the object is characterized by nonzero temporal dynamics. The assumption could be enforced by setting regularization parameter to a large value in static areas 
(η=500, large filtering), and to zero in the rest of the object (η=0, no filtering). The approach is similar to Noquist technique [3] developed to reconstruct time frames by 
direct matrix inversion, which assumes static area solution is common for all time frames. The results are shown in Fig. 2. 

The second, adaptive method assumes that temporal dynamics of object is known, for example, from training scans or employing navigator information. We solve 

(1) using filter (3) with regularization parameter varying gradually from minimum to maximum values in accordance with 
2trainLf , where trainf  is training data. To test 

the adaptive method, we added simulated respiratory motion to the digital object (Fig. 3). Such motion results in aliased pixels with overlapping temporal spectra (Fig. 
1c). The nonadaptive reconstruction was implemented setting η to 0 in dynamic and to 500 in static areas. The results are shown in Fig. 3. 
Discussion and Conclusions: We described a general framework for reconstruction of dynamic MRI series from undersampled data using Tikhonov formulation. The 
framework is flexible to accommodate any number of temporal and spatial filters for regularized solution. Many existing methods [1-4, 6] have an equivalent 
formulation inside the proposed framework. It allows combining them to fulfill needs of a particular MRI application. The filtering effects of individual methods could 
be balanced by adjusting regularization parameters. One way to find the optimal set of regularization parameters is to use L-surface algorithm [8]. The framework also 
allows nonlinear filters such as total variation filter. Using nonlinear filters [4] may help recover rapid dynamic changes that are excessively penalized by L2 norm (3), 
and is an interesting area of the future research. 

Next, we proposed two new methods for reconstruction of undersampled dynamic MRI data based on the 1st order temporal regularization. The first, nonadaptive 
method produces high quality reconstruction of time series when Noquist-type assumption is met. The second, adaptive technique provided good results even in the 
presence of aliased pixels with overlapping temporal spectra due to simulated respiratory motion. Such overlapping is met in many studies due to patient respiratory 
motion, and is a source of image artifacts in a number of existing methods. The efficiency of the adaptive method comes from incorporating the knowledge about the 
object’s temporal dynamics into reconstruction. In practice, such knowledge could be obtained by means of separate training scans [2]. 
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