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Introduction 
Balanced SSFP has become an increasingly popular technique in magnetic resonance imaging (MRI). A variety of SSFP imaging methods have been 

introduced for separating water and lipids [1-5]. The majority of these approaches require at least twice the scan time of standard SSFP. Hargreaves, et al. [5] presented 
a phase sensitive approach (PS-SSFP) that requires no additional time compared to standard SSFP. 

While phase sensitive SSFP accurately separates chemical species, no automated method exists to consistently identify resulting fat and water images for 
annotation purposes. Similar problems arise with separation of white and gray matter in phase sensitive IR[6]. In PS-SSFP, each pixel in the image is rotated by a fitted  
phase onto the real axis in the complex plane. Due to phase ambiguity, it can be unclear whether positive real values represent fat or water after rotation. In this work, 
we present an algorithm that consistently and accurately identifies fat and water in PS-SSFP musculoskeletal images.  
 
Methods 

A 3D balanced SSFP sequence was implemented on a 1.5T Twinspeed Excite platform (GE Healthcare, Milwaukee, WI). Following informed consent, three 
scans of healthy knees were imaged using a SSFP sequence and a quadrature knee coil. After source images were reconstructed, the 3D images were processed using 
the PS-SSFP fat-water separation algorithm. All Fourier image reconstruction was performed on-line, and subsequent fat-water separation was performed using an on-
line region-growing phase correction scheme [5]. 
 In SSFP, the signal intensity of fat is considerably higher than that of other tissue due to its high T2/T1 ratio. This observation is leveraged to determine 
whether positive signals represent fat or water. For each slice in an image, pixels are grouped into those with positive real parts and those with negative real parts.  The 
average magnitude for each group is calculated, and the group with the higher average is assumed to represent fat.  

This calculation is repeated for each slice across the imaged volume. The ratio of the magnitude of the average positive signal to the magnitude of the 
average negative signal is compared for each slice. Since PS-SSFP consistently separates fat 
and water, it is only necessary to identify fat and water correctly on one particular slice in 
the 3D image. This identification can then be applied across all slices. Therefore, the slice 
with the greatest difference between positive and negative averages can be considered when 
identifying fat and water.  

 
Results  

An example of the PS-SSFP separation is shown in Figures 1 and 2. Sagittal 
images of the knee were acquired with the following parameters: TR=5.7ms, TE=2.9ms, 
Bandwidth=±62.5kHz, Slice Thickness=1.0mm, FOV=15x15, Flip Angle=23º. It is 
apparent that the magnitude of the average intensity of Figure 1 is greater than the 
magnitude of the average intensity of Figure 2. For this particular slice, the magnitude of 
average intensity of Figure 1 is 519, while the magnitude of average intensity of Figure 2 is 
194. The ratio of average positive to average negative is 2.67. From this ratio, we are able to 
accurately identify Figure 1 as the fat image, and Figure 2 as the water image. This indicates 
that all positive pixel values in this 3D image can be classified as fat.  

The ratio of the average positive signal to average negative signal for the three 
knee scans is shown across slices of the 3D volumes (Figures 3,4,5). In each of the three scans, the peak ratio between the intensity of fat and water is greater than two. 
This indicates that the average intensity of the fat image is double the average intensity of the water image. As shown in Figs. 3, 4, and 5, the center slices tend to have 
more pronounced differences between average signal intensities than edge slices.  

 
Discussion 
We have presented a method that accurately identifies which image represents fat and which represents water after PS-SSFP reconstruction.While synovial fluid also 
appears bright in SSFP musculoskeletal images due to its high T2/T1 ratio, it typically represents only a small fraction of the pixels in the water image and therefore we 
expect it will not contribute significantly to the average calculated pixel value.  
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Figure 3 : Knee scan with parameters(TR:5.7ms, TE:2.9ms, 
Bandwidth:62.5kHz, FOV:15x15, Slice Thickness:1.0mm, 
NEX:3) 

Figure 4 : Knee scan with parameters(TR:5.6ms, TE:2.8ms, 
Bandwidth:41.7kHz, FOV:12x12, Slice Thickness:1.5mm, 
NEX:4) 

Figure 5 : Knee scan with parameters(TR:4.5ms, TE:2.2ms, 
Bandwidth:41.7kHz, FOV:13x13, Slice Thickness:1.0mm, 
NEX:2) 
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