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Introduction 
In MRI, one seeks to produce an accurate image of the effective spin density, ρ(r), from a set of measurements {sq} acquired in the Fourier domain. Because the signal 
equation (1a) is a continuous-to-discrete mapping, image reconstruction is inherently ill-posed, i.e., infinitely many functions give rise to the same data. Complicating 
matters, fast imaging sequences use trajectories that result in a non-uniform sampling of k-space.  One is therefore forced to choose a reconstruction procedure, either a 
direct method, e.g. the pseudo-inverse [1] or "convolution-gridding" [2], or an iterative one [3]. We describe a unified analytical framework for understanding all of 
these reconstruction schemes. We derive a simple analytical formula for optimal density compensation weights and show that the computation can be carried out in 
O(NlogN) time.  The combination of non-uniform FFT and these optimal weights results in an extremely fast and accurate method to reconstruct MR images from 
arbitrarily sampled k-space trajectories. 

Background 
Fourier Reconstruction: The signal equation (1a) expresses s(k) as the Fourier transform of ρ(r) and satisfies the inverse 
formula (1b). With only a finite set of measurements, one can seek an approximation to the integral transform (1b) as a sum 
(2) with the factors wq serving as quadrature weights. There are thus two tasks: 1) selecting appropriate weights and 2) 
implementing (2) efficiently. During the past several years the latter problem has been solved. Sums of the form (2) can be 
computed in O(N log N) time with complete control of precision using the non-uniform FFT (NUFFT) [4,5,6]. It is worth 
emphasizing that once the decision has been made to use a reconstruction of the form (2), the issues of fast computation and 
weight selection are completely independent of one another. 
Pseudo-Inverse, Least Squares Reconstruction:  Another possible image reconstruction scheme is the pseudo-inverse 
[7]. The procedure as outlined by [1] is reproduced in (3a-d). The forward operator is F, and its pseudo-inverse is 
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. The singular value decomposition (SVD) can be used to invert the NxN matrix Q=FF

*
, an expensive procedure 

requiring O(N3) operations, feasible for moderate sized 2-D acquisitions (N=64x64), but impractical at higher resolution 
or in 3-D. Computational complexity aside, in the absence of a priori information, the pseudo-inverse reconstruction 
stands out as a generally agreed upon standard for comparison. 
Density Compensation Weights: Several weighting schemes have been considered in the literature based on 1) 
analytically known  trajectories and their  Jacobian mapping [8,9],  2) area weighting using Voronoi tesselation [10],  3) 
convolution of delta-functions at the nodes {kq} with a kernel [2];, and 4) iterative methods [11,12]. While all of these 
approaches are reasonable, they don’t satisfy any clear optimality condition. 
Optimal Weights: Recently, Sedarat and Nishimura [13] described an optimal weighting scheme. They astutely observed 
that gridding reconstruction (2) is an approximation to pseudo-inverse reconstruction (3), and that the density compensation 
weights in (2) are the equivalent of a diagonal approximation to Q

+
 in (3). They show that the optimal weights can be obtained by 

minimizing the error in (4a), solving the linear system (4c). As they note, (4c) is ill-conditioned and requires the SVD for solution, 
again requiring O(N3) work. 

Results and Discussion 
Fast Analytic Optimal Weights: A. We propose a slight change to the formalism, which has surprising impact. Instead of 
minimizing (4a) the error in the image domain, we consider the dual approach (5a) and minimize the error in the signal domain.  A 
similar calculation to the one performed in [13] results in the relationship (5c) and the analytic formula (5d). B. Because the matrix 
M is of the form of a discrete convolution, the formula (5d) can be computed in O(NlogN) operations using the NUFFT [14]. 
Simulations: We present results from simple 1-D Matlab simulations to 
demonstrate the accuracy of the reconstruction obtained using the optimal 
weights (5d). A random bandpass-limited object was used to generate the 
signal and reconstruction was carried out according to (2) with weights 
satisfying (4c) and (5c). Left Panel: trajectory with double the sampling 
density near the center of k-space. Right Panel: trajectory with 80 random 
points. For each panel, the sampling scheme is at the top, the weights are in 
the middle (Red for (4c), Blue for (5d)), and the object and reconstructions 
are at the bottom (Blue for original, Green for (4c), Red of (5d)). In both 
cases the reconstruction is extremely accurate, although, as expected, the 
random trajectory produces somewhat worse reconstructions of the true 
object because of gaps in the sampling. Note that for these redundant 
samplings, the weights (4c) from [13] have an oscillatory behavior, which is undesirable if they are to be interpreted as quadrature weights. Regularization in solving 
(4c) controls the oscillations somewhat, but a clear rule for this is not presently available. 

Conclusion 
We have developed optimal density compensation weights for arbitrary 1, 2, and 3-D k-space trajectories computable on the fly, in O(NlogN) time. We believe that 
these weights, in conjunction with the NUFFT, will result in extremely fast and accurate MR image reconstruction from arbitrarily sampled k-space trajectories. 
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