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Introduction: In the presence of noise, the image intensity in magnitude MRI is governed by a Rician distribution. In a signal-free region (outside an 
image object), thermal noise is transformed into Rayleigh distribution [1] although the thermal noise has a standard distribution. In practical operation, 

the estimation of thermal noise in a magnitude image is obtained by multiplying noise intensity with a correctional factor of 2/2 π−  (about 0.655) to 
get the genuine standard deviation of noise [2]. However, such an operation could overestimate the thermal noise level when there are imaging 
artifacts. In the present study, we propose a new method to estimate the thermal noise in the presence of image artifacts. By analyzing real and 
imaginary channels of image data without prior knowledge of artifacts, the noise intensity can be well estimated. We further demonstrate its 
application to the evaluation of thermal noise in gradient-echo EPI images employed for fMRI studies.  
Theory: In signal-free regions, reconstructed imaging datasets of the real and imaginary channels have three variable components: intensity a(t), 
phase θ(t), and thermal noise n(t), which can be expressed as follows: ( )tR = ( ) ( )( ) ( )tntta 1cos +θ ; and ( )tI = ( ) ( )( ) ( )tntta 2sin +θ ,  (1) 

assuming the artifacts are far smaller as compared to the signal, and their intensities are constant, denoted as level a. The phase of these artifacts can be 

expressed as ( ) ( ) ( ) ( )tttt θθθθθ ∆+=∆+= ; the fluctuation of phase ( )tθ∆  is relatively small as well. Then Eq. (1) can be modified as: 

( )tR = ( )( ) ( )tnta 1cos +θ ( )( ) ( )tnta 1sincos +∆⋅−≈ θθθ ; ( )tI = ( )( ) ( )tnta 2sin +θ ( )( ) ( )tnta 2cossin +∆⋅+≈ θθθ .    (2) 

The standard deviation of phase fluctuation is denoted as σθ, and the noise in the two channels is mutually independent and can be modeled as zero 
mean with standard deviation σ0. Thus the thermal noise intensity σ0 can be solved through the one of following equations: 

  ( )( ) 2
0

222 sin σσθ θ +⋅= atRVar ; ( )( ) 2
0

222 cos σσθ θ +⋅= atIVar ,            (3) 

where Var() denotes the variance. The artifact level a and phase expectation θ can be estimated from:  

( )( ) ( )( )222 tItRa +=  or ( ) ( )( )tRtIarctan=θ .               (4) 

While the Rician model only holds for normal distribution, the proposed method from the solution of Eq. (3) has no restriction on the types of 
distributions of thermal noise. It is known that the estimation of the phase θ is dependent on the signal-to-noise ratio (SNR), and the solution of Eq. (3) 
can give a reliable estimation of σ0, which has been proven (data not shown).  
Materials and Methods: Three types of noise estimation methods are employed in the datasets with different SNRs (α/σ0). One method is to directly 
use the raw variance of voxel time courses (defined as the Raw method); another is to correct with a distribution transform factor of 0.655 (called the 
Rayleigh method); the third is to get the solution from Eq. (3) (called the Complex Model Solution method, CMS). A single-shot gradient-echo EPI 
sequence was employed with the following imaging parameters: TR of 2 s, TE of 40 ms, FOV of 24 cm, matrix of 64×64, slice thickness of 6 mm. 
Imaging slices were acquired and repeated 100 times to obtain the voxel time courses. Informed consents were obtained from all subjects. All subjects 
were in resting status during the scanning. A signal-free region at the upper-left corner of the images is selected to estimate the noise with a lower 
artifact level than that from global voxels. Those voxels that have estimated phase fluctuations under 0.5, and artifact levels below 1/20 of the signal 
intensity (mean values of phantom or brain region) are selected to calculate global noise intensity.  
Results and Discussion: The simulation results are shown in Fig. 1. As expected, when the SNR is very low (corresponding to the signal-free region), 
the Raw method underestimated the noise intensity, and both the Rayleigh and the CMS methods made a correct estimation. However, the Rayleigh 
method overestimated the noise level when the SNR is larger than 1. The simulated CMS method always gives a correct estimation no matter how 
much the SNR is as shown in Fig. 1 (left panel). When using experimental data to calculate the noise levels using the three methods, the estimations of 
noise level are SNR dependent. As predicted from the simulated curve, at a low SNR (phantom) both the Rayleigh and CMS methods provided a 
correct value and the Raw underestimated. At SNR close to 1 (in the case of the upper-left corner), the Rayleigh overestimated, the Raw 
underestimated, and the CMS correctly estimated the noise level. At the higher SNR of 3 (global voxels), the Rayleigh method continuously 
overestimated the noise level whereas the Raw and CMS methods provided correct estimations. These results demonstrated that when images are 
contaminated by artifacts, the CMS method provides a reliable estimation of the noise level with robustness at different SNRs. In conclusion, the 
proposed method can adapt to more general situations (with or without artifacts) for noise intensity evaluation. 
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Fig.1. (left) The dependence of 
noise estimation on SNR by using 
three different methods with the 
simulated data. (right) The noise 
estimation with experimental data 
at different noise levels with Raw 
(square), Rayleigh (triangle), and 
CMS (star) methods. Both panels 
have the same x-axis for SNR and 
y- axis for estimated noise 
intensity. 
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