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Introduction: One limitation of MRI is the partial volume effect where the boundary between two structures of interest falls in the middle of a voxel and the signal is 
“averaged” over a sample volume. Partial volume produces significant blurring, especially when thick MRI slices are used. When the point spread function of the 
acquisition chain is smaller than a voxel, as it is often the case in MRI, partial voluming account for most of the limitation in resolution and the filtering of tissue 
boundaries. We propose a method to reduce partial voluming by restoring the ideal boundary. We assume as a first approximation that a voxel averages over a 
rectangular solid, and we split a voxel into sub-voxels and reapportion the signal to them. The method is based on a numerical implementation of reverse diffusion, and 
it shows significant quality improvement over conventionally interpolated MR images. 
 
Methods: We start with a 2D MRI image and create sub-voxels using nearest neighbor interpolation. The gray level of each sub-voxel is considered as “material” able 
to move between sub-voxels but not between voxels. A partial differential equation is written to allow the material to flow towards the highest gradient direction, 
eventually reducing to the diffusion or heat conduction equation with a positive sign (hence the name: reverse diffusion). Special constraints keep the implementation 
stable by limiting the flow of material leaving a sub-voxel. Firstly, the flow is limited by the amount of signal in excess with respect to its lowest nearest neighbor. 
Secondly, the recipient sub-voxel of the flow should be able to receive new materials without exceeding the level of its highest neighbors. Thirdly, the amount of 
material in a voxel computed as the sum over all its sub-pixels is kept constant. As a result, the signal in each pixel is reapportioned among its sub-pixels to correct for 
partial volume effect.  
 
Results: The method performs well as determined from synthetic images as well as actual MRI scans of both phantom and actual human acquisitions. Synthetic images 
were down-sampled to simulate partial volume artifact and restored. Corrected images were remarkably closer to the original images than those obtained from common 
interpolation methods. The mean square difference error was much reduced on multi-class test images: 6.5%, 5.9%, and 1.1% for bilinear interpolation, bicubic 
Interpolation, and reverse diffusion respectively (not shown). Result of actual MRI scans showed improvement of the depicted anatomy on brain and neck acquisitions. 
On specially design physical MRI phantoms, images processed with the new method had much crisper, truer edges than did images processed with bicubic 
interpolation.  
 
Discussion: Whether MR images are observed by radiologist or used in automatic algorithms, a common pre-processing step is to interpolate the data to remove 
pixelization effect in the former case, and increase accuracy on the latter. The theoretically optimal method uses a sinc kernel but is impossible to implement because of 
the infinite support of the kernel. Numerous approximations have been proposed Lanczos, splines, bicubic, linear that allow controlling the trade-off between blurring 
and ringing artifact. Those methods use only the gray-level information and no assumption about the partial volume process. Moreover because of the constraint on the 
global flow, the signal integral is conserved. That is, when a structure volume needs to be measured, the sum of the voxel signal will not be biased as we show it is the 
case with other common interpolation techniques. A very desirable feature when size of tumor lesion are quantified or brain volumetric study are performed for 
example. In some application when partial volume effect must be corrected, especially for tissue classification application, another class of methods relies on the 
modeling of the image histogram, often as a Gaussian mixture, and they use spatial information between pixels to estimate the mix inside each pixel of the different 
classes. Almost all of them assume that a pixel can only be made of two different classes [1]. Such methods provide very good result if the assumption of multi-class 
images holds. Their performance is dependant on the accuracy of the histogram modeling, and some application specific parameters need to be specified such as the 
number of class. The method that we present does not rely on classification and histogram modeling. It uses the gray-level information of the pixels and the assumption 
that a partial volume blurring has occurred. It leads to better results than pure interpolation methods since it uses more information, while avoiding the drawbacks of the 
pattern recognition techniques. \ 
 
[1] K. Van Leemput, et al TMI, 22(1), 105-119, (2003). 
 
Figure 1: The original phantom image (a) is corrected 
with bicubic interpolation (b) and the proposed 
method (c). The line profile of panel (a) is displayed 
on panel (d). One can appreciate the sharpness of the 
edges with our method compared with classic 
interpolation.  

Figure 2: physical phantom acquisition (a) and its 
correction with the proposed method increasing the 
resolution by x2 (b) and x4 (c). Panel (d) shows the 
same initial data interpolated four times with bicubic 
interpolation.  
 

Figure 3: Human brain image at high (a) and low 
resolution (b). The low resolution image has been 
corrected with the proposed method (c) and with 
bicubic interpolation (d). Edges between structures are 
sharper with our method.  
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