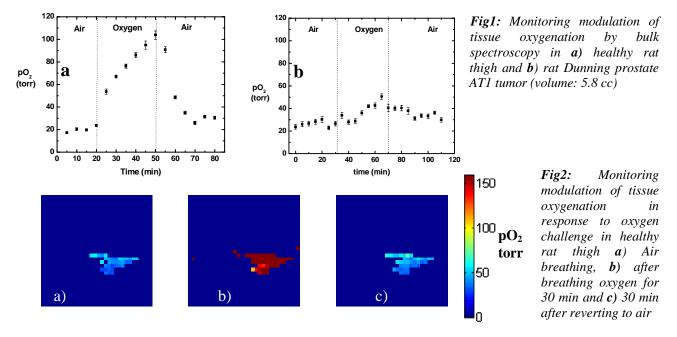
Quantitative Tissue Oximetry using Proton MR of Hexamethyldisiloxane


V. D. Kodibagkar¹, W. Cui¹, M. E. Merritt¹, R. P. Mason¹

¹Radiology, UT Southwestern Medical Center at Dallas, Dallas, Texas, United States

Introduction: There is increasing evidence for the importance of tissue oxygenation in development, progression, and response to cancer therapy. Oxygen is required for efficient function by most tissues and hypoxia leads to rapid cellular dysfunction and damage. In addition, hypoxic tumor cells are refractory to radiotherapy. Thus, the opportunity to measure tissue oxygen tension (pO₂) non-invasively may be significant in understanding mechanisms of tissue function and in clinical prognosis. The linear dependence of R₁ of fluorocarbon ¹⁹F resonances on pO₂ is well known and has been studied extensively¹. We have previously studied the potential of HMDSO as a ¹H based pO₂ reporter molecule and found the linear dependence of R₁ of HMDSO on pO₂ (R₁= 0.12+ 0.00173*pO₂[torr] at 37°C). Here, we study the modulation of tissue oxygenation in response to oxygen challenge in order to further validate the use of HMDSO as a pO₂ reporter molecule.

Materials and Methods: A spin-echo EPI based pulse sequence was used for imaging and measuring T_1 values using a Varian 4.7 T scanner. The sequence consisted of a) 20 non-selective saturation pulses followed by a delay *tau* for magnetization recovery, b) 3 CHESS pulses for selective saturation of water and fat immediately followed by c) spin-echo EPI detection with a slice selective 90° pulse and a frequency selective 180° pulse. T_1 maps were obtained using this sequence with the ARDVARC (Alternating Relaxation Delays with Variable Acquisitions for Reduction of Clearance effects) protocol², by varying *tau* (3 and half min. per T1 measurement). For comparison, reference images were obtained using a spin echo sequence. T_1 and pO₂ maps were computed using homebuilt software based on the Matlab programming language.

Modulation of tissue oxygenation in response to oxygen challenge was successfully monitored by bulk spectroscopy and imaging. The short total acquisition time reveals dynamic response to therapeutic interventions. Minimal toxicity and wide availability add to the promise of HMDSO as a pO_2 reporter molecule. We believe it has great potential for application in the clinic especially as all the techniques used can be implemented on clinical scanners. **Acknowledgements:** This work was supported by DOD DAMD17-03-1-0101, Cancer Imaging Program P20 CA086354 and BTRP P41 RR02584

References

- (1) Zhao, D.; Jiang, L.; Mason, R. P. *Methods Enzymol* **2004**, *386*, 378-418.
- (2) Hunjan, S.; Zhao, D.; Constantinescu, A.; Hahn, E. W.; Antich, P. P.; Mason, R. P. *Int. J. Radiat. Oncol. Biol. Phys.* **2001**, *49*, 1097-1108.